Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 11097, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045561

RESUMO

Nematodes and drought are major constraints in tropical agriculture and often occur simultaneously. Plant responses to these stresses are complex and require crosstalk between biotic and abiotic signaling pathways. In this study, we explored the transcriptome data of wild Arachis species subjected to drought (A-metaDEG) and the root-knot nematode Meloidogyne arenaria (B-metaDEG) via meta-analysis, to identify core-stress responsive genes to each individual and concurrent stresses in these species. Transcriptome analysis of a nematode/drought bioassay (cross-stress) showed that the set of stress responsive DEGs to concurrent stress is distinct from those resulting from overlapping A- and B-metaDEGs, indicating a specialized and unique response to combined stresses in wild Arachis. Whilst individual biotic and abiotic stresses elicit hormone-responsive genes, most notably in the jasmonic and abscisic acid pathways, combined stresses seem to trigger mainly the ethylene hormone pathway. The overexpression of a cross-stress tolerance candidate gene identified here, an endochitinase-encoding gene (AsECHI) from Arachis stenosperma, reduced up to 30% of M. incognita infection and increased post-drought recovery in Arabidopsis plants submitted to both stresses. The elucidation of the network of cross-stress responsive genes in Arachis contributes to better understanding the complex regulation of biotic and abiotic responses in plants facilitating more adequate crop breeding for combined stress tolerance.


Assuntos
Arachis/genética , Arachis/parasitologia , Secas , Estresse Fisiológico/fisiologia , Tylenchoidea , Animais , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Transcriptoma
2.
Mol Genet Genomics ; 295(4): 1063-1078, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32333171

RESUMO

Root-knot nematodes (RKNs, genus Meloidogyne) affect a large number of crops causing severe yield losses worldwide, more specifically in tropical and sub-tropical regions. Several plant species display high resistance levels to Meloidogyne, but a general view of the plant immune molecular responses underlying resistance to RKNs is still lacking. Combining comparative genomics with differential gene expression analysis may allow the identification of widely conserved plant genes involved in RKN resistance. To identify genes that are evolutionary conserved across plant species, we used OrthoFinder to compared the predicted proteome of 22 plant species, including important crops, spanning 214 Myr of plant evolution. Overall, we identified 35,238 protein orthogroups, of which 6,132 were evolutionarily conserved and universal to all the 22 plant species (PLAnts Common Orthogroups-PLACO). To identify host genes responsive to RKN infection, we analyzed the RNA-seq transcriptome data from RKN-resistant genotypes of a peanut wild relative (Arachis stenosperma), coffee (Coffea arabica L.), soybean (Glycine max L.), and African rice (Oryza glaberrima Steud.) challenged by Meloidogyne spp. using EdgeR and DESeq tools, and we found 2,597 (O. glaberrima), 743 (C. arabica), 665 (A. stenosperma), and 653 (G. max) differentially expressed genes (DEGs) during the resistance response to the nematode. DEGs' classification into the previously characterized 35,238 protein orthogroups allowed identifying 17 orthogroups containing at least one DEG of each resistant Arachis, coffee, soybean, and rice genotype analyzed. Orthogroups contain 364 DEGs related to signaling, secondary metabolite production, cell wall-related functions, peptide transport, transcription regulation, and plant defense, thus revealing evolutionarily conserved RKN-responsive genes. Interestingly, the 17 DEGs-containing orthogroups (belonging to the PLACO) were also universal to the 22 plant species studied, suggesting that these core genes may be involved in ancestrally conserved immune responses triggered by RKN infection. The comparative genomic approach that we used here represents a promising predictive tool for the identification of other core plant defense-related genes of broad interest that are involved in different plant-pathogen interactions.


Assuntos
Produtos Agrícolas/genética , Resistência à Doença/genética , Proteínas de Plantas/genética , Tylenchoidea/patogenicidade , Animais , Arachis/genética , Arachis/parasitologia , Café/genética , Café/parasitologia , Produtos Agrícolas/parasitologia , Regulação da Expressão Gênica de Plantas/genética , Genômica , Genótipo , Interações Hospedeiro-Patógeno/genética , Oryza/genética , Oryza/parasitologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Imunidade Vegetal/genética , Glycine max/genética , Glycine max/parasitologia , Tylenchoidea/genética
3.
Braz. J. Pharm. Sci. (Online) ; 55: e18135, 2019. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1011636

RESUMO

In the present study, the occurrence of fungi and aflatoxins (AFs) in peanut and cashew nut samples was investigated. Mycological analysis revealed the presence of fungi in 58.8% of samples, and assessment of AFs by chromatographic methods revealed that 52.9% were contaminated by AFs. AFB1 was the principal component in all AF-contaminated samples, with a mean level of 14.0, and 1.08 µg/kg in peanut and cashew nut, respectively. Eleven samples (32.4%) exceeded the total AF maximum level (4 µg/kg) and 8 samples (23.5%) exceeded the AFB1 (2 µg/kg) established by the European Commission. Our findings suggest that the incidence of AFs emphasizes the need for regular monitoring and a more stringent food safety system to control AFs at the lowest possible levels in peanuts and cashew nuts. The hypothetical dietary exposure suggests that the food products evaluated may significantly contribute to the overall human exposure


Assuntos
Arachis/parasitologia , Medição de Risco , Aflatoxinas/efeitos adversos , Fungos , Anacardium/parasitologia
4.
BMC Plant Biol ; 18(1): 159, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30081841

RESUMO

BACKGROUND: The Root-Knot Nematode (RKN), Meloidogyne arenaria, significantly reduces peanut grain quality and yield worldwide. Whilst the cultivated species has low levels of resistance to RKN and other pests and diseases, peanut wild relatives (Arachis spp.) show rich genetic diversity and harbor high levels of resistance to many pathogens and environmental constraints. Comparative transcriptome analysis can be applied to identify candidate resistance genes. RESULTS: Transcriptome analysis during the early stages of RKN infection of two peanut wild relatives, the highly RKN resistant Arachis stenosperma and the moderately susceptible A. duranensis, revealed genes related to plant immunity with contrasting expression profiles. These included genes involved in hormone signaling and secondary metabolites production and also members of the NBS-LRR class of plant disease resistance (R) genes. From 345 NBS-LRRs identified in A.duranensis reference genome, 52 were differentially expressed between inoculated and control samples, with the majority occurring in physical clusters unevenly distributed on eight chromosomes with preferential tandem duplication. The majority of these NBS-LRR genes showed contrasting expression behaviour between A. duranensis and A. stenosperma, particularly at 6 days after nematode inoculation, coinciding with the onset of the Hypersensitive Response in the resistant species. The physical clustering of some of these NBS-LRR genes correlated with their expression patterns in the contrasting genotypes. Four NBS-LRR genes exclusively expressed in A. stenosperma are located within clusters on chromosome Aradu. A09, which harbors a QTL for RKN resistance, suggesting a functional role for their physical arrangement and their potential involvement in this defense response. CONCLUSION: The identification of functional novel R genes in wild Arachis species responsible for triggering effective defense cascades can contribute to the crop genetic improvement and enhance peanut resilience to RKN.


Assuntos
Arachis/metabolismo , Resistência à Doença/genética , Genes de Plantas/genética , Raízes de Plantas/metabolismo , Tylenchoidea , Animais , Arachis/genética , Arachis/parasitologia , Perfilação da Expressão Gênica , Genes de Plantas/fisiologia , Filogenia , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Raízes de Plantas/genética , Raízes de Plantas/parasitologia , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
5.
PLoS One ; 12(4): e0175940, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28423007

RESUMO

Peanut is a major oilseed crop worldwide. In the Brazilian peanut production, silvering thrips and red necked peanut worm are the most threatening pests. Resistant varieties are considered an alternative to pest control. Many wild diploid Arachis species have shown resistance to these pests, and these can be used in peanut breeding by obtaining hybrid of A and B genomes and subsequent polyploidization with colchicine, resulting in an AABB amphidiploid. This amphidiploid can be crossed with cultivated peanut (AABB) to provide genes of interest to the cultivar. In this study, the sterile diploid hybrids from A. magna V 13751 and A. kempff-mercadoi V 13250 were treated with colchicine for polyploidization, and the amphidiploids were crossed with A. hypogaea cv. IAC OL 4 to initiate the introgression of the wild genes into the cultivated peanut. The confirmation of the hybridity of the progenies was obtained by: (1) reproductive characterization through viability of pollen, (2) molecular characterization using microsatellite markers and (3) morphological characterization using 61 morphological traits with principal component analysis. The diploid hybrid individual was polyploidized, generating the amphidiploid An 13 (A. magna V 13751 x A. kempff-mercadoi V 13250)4x. Four F1 hybrid plants were obtained from IAC OL 4 × An 13, and 51 F2 seeds were obtained from these F1 plants. Using reproductive, molecular and morphological characterizations, it was possible to distinguish hybrid plants from selfed plants. In the cross between A. hypogaea and the amphidiploid, as the two parents are polyploid, the hybrid progeny and selves had the viability of the pollen grains as high as the parents. This fact turns the use of reproductive characteristics impossible for discriminating, in this case, the hybrid individuals from selfing. The hybrids between A. hypogaea and An 13 will be used in breeding programs seeking pest resistance, being subjected to successive backcrosses until recovering all traits of interest of A. hypogaea, keeping the pest resistance.


Assuntos
Arachis/genética , Cruzamentos Genéticos , Genoma de Planta , Pólen/genética , Poliploidia , Sementes/genética , Animais , Arachis/efeitos dos fármacos , Arachis/imunologia , Arachis/parasitologia , Mapeamento Cromossômico , Colchicina/farmacologia , Helmintos/patogenicidade , Helmintos/fisiologia , Hibridização Genética , Repetições de Microssatélites , Mutagênicos/farmacologia , Filogenia , Melhoramento Vegetal/métodos , Imunidade Vegetal/genética , Pólen/efeitos dos fármacos , Pólen/imunologia , Análise de Componente Principal , Sementes/efeitos dos fármacos , Sementes/imunologia , Tisanópteros/patogenicidade , Tisanópteros/fisiologia
6.
Semina Ci. agr. ; 36(2): 619-630, mar.-abr. 2015. tab
Artigo em Português | VETINDEX | ID: vti-30255

RESUMO

Este trabalho teve como objetivos avaliar a atratividade, não preferência para alimentação e antibiose em cultivares de amendoim de hábitos de crescimento ereto e rasteiro a Stegasta bosquella (Chambers). Avaliaram-se oito cultivares, sendo quatro de hábito de crescimento ereto (IAC Tatu, IAC 22, IAC 8112 e IAC 5) e quatro de hábito rasteiro (IAC Runner 886, IAC 147, IAC 125 e IAC 503). Foram realizados testes de não preferência para alimentação com e sem chance de escolha, utilizando-separes de discos foliares sobrepostos de 1,0 cm de diâmetro, os quais foram dispostos em placas de Petri onde foram liberadas lagartas de terceiro instar de S. bosquella. Avaliou-se a atratividade das lagartas em tempos pré-estabelecidos, além da massa seca consumida. No teste de antibiose, foram avaliados os parâmetros biológicos: período e viabilidade larval, de pré-pupa, pupal e total, pesos de lagartas e pupas, razão sexual e longevidade. Nenhuma das cultivares de amendoim de hábito de crescimento rasteiro apresentaram resistência do tipo não preferência para alimentação. Dentre as cultivares de hábito de crescimento ereto, IAC 5 e IAC 22 foram as menos atrativas e consumidas no teste de não preferência para alimentação com chance de escolha, e IAC 5 e IAC 8112 foram as menos atrativas no teste sem chance de escolha. As cultivares de hábito rasteiro IAC 147 e IAC Runner 886 afetaram a...(AU)


This work aimed to evaluate the attractiveness, non-preference for feeding and antibiosis in straight and runner growth habit peanut cultivars to Stegasta bosquella (Chambers). Eight cultivars were evaluated, four of straight growth habit (IAC Tatu, IAC 22, IAC 8112 and IAC 5) and four of runner growth habit (IAC Runner 886, IAC 147, IAC 125 and IAC 503). Free-choice and no-choice feeding tests were performed, using pairs of overlapped leaf discs with 1.0 cm diameter, which were placed in Petri dishes where third instar larvae of S. bosquella were released. The attractiveness to the larvae was assessed in predetermined times, in addition to the dry mass consumed. In the antibiosis assay, the biological parameters were evaluated: period and viability of larvae, pre-pupae, pupae, and total, weight of larvae and pupae, sex ratio and longevity. None of the runner growth habit cultivars exhibited non-preference for feeding-type resistance. Among the straight growth habit cultivars, IAC 5 and IAC 22 were the least attractive and consumed in the free-choice feeding test, and IAC 5 and IAC 8112 were the least attractive in the no-choice test. The runner growth habit cultivars IAC 147 and IAC Runner 886 affected the larval survival of S. bosquella, exhibiting antibiosis-type resistance. For the straight growth habit cultivars, IAC 22 and IAC 8112 affected the larval viability...(AU)


 


Assuntos
Antibiose , Arachis/parasitologia , Pragas da Agricultura , Lepidópteros
7.
Semina ciênc. agrar ; 36(2): 619-630, 2015. tab
Artigo em Português | VETINDEX | ID: biblio-1499929

RESUMO

Este trabalho teve como objetivos avaliar a atratividade, não preferência para alimentação e antibiose em cultivares de amendoim de hábitos de crescimento ereto e rasteiro a Stegasta bosquella (Chambers). Avaliaram-se oito cultivares, sendo quatro de hábito de crescimento ereto (IAC Tatu, IAC 22, IAC 8112 e IAC 5) e quatro de hábito rasteiro (IAC Runner 886, IAC 147, IAC 125 e IAC 503). Foram realizados testes de não preferência para alimentação com e sem chance de escolha, utilizando-separes de discos foliares sobrepostos de 1,0 cm de diâmetro, os quais foram dispostos em placas de Petri onde foram liberadas lagartas de terceiro instar de S. bosquella. Avaliou-se a atratividade das lagartas em tempos pré-estabelecidos, além da massa seca consumida. No teste de antibiose, foram avaliados os parâmetros biológicos: período e viabilidade larval, de pré-pupa, pupal e total, pesos de lagartas e pupas, razão sexual e longevidade. Nenhuma das cultivares de amendoim de hábito de crescimento rasteiro apresentaram resistência do tipo não preferência para alimentação. Dentre as cultivares de hábito de crescimento ereto, IAC 5 e IAC 22 foram as menos atrativas e consumidas no teste de não preferência para alimentação com chance de escolha, e IAC 5 e IAC 8112 foram as menos atrativas no teste sem chance de escolha. As cultivares de hábito rasteiro IAC 147 e IAC Runner 886 afetaram a...


This work aimed to evaluate the attractiveness, non-preference for feeding and antibiosis in straight and runner growth habit peanut cultivars to Stegasta bosquella (Chambers). Eight cultivars were evaluated, four of straight growth habit (IAC Tatu, IAC 22, IAC 8112 and IAC 5) and four of runner growth habit (IAC Runner 886, IAC 147, IAC 125 and IAC 503). Free-choice and no-choice feeding tests were performed, using pairs of overlapped leaf discs with 1.0 cm diameter, which were placed in Petri dishes where third instar larvae of S. bosquella were released. The attractiveness to the larvae was assessed in predetermined times, in addition to the dry mass consumed. In the antibiosis assay, the biological parameters were evaluated: period and viability of larvae, pre-pupae, pupae, and total, weight of larvae and pupae, sex ratio and longevity. None of the runner growth habit cultivars exhibited non-preference for feeding-type resistance. Among the straight growth habit cultivars, IAC 5 and IAC 22 were the least attractive and consumed in the free-choice feeding test, and IAC 5 and IAC 8112 were the least attractive in the no-choice test. The runner growth habit cultivars IAC 147 and IAC Runner 886 affected the larval survival of S. bosquella, exhibiting antibiosis-type resistance. For the straight growth habit cultivars, IAC 22 and IAC 8112 affected the larval viability...


Assuntos
Antibiose , Arachis/parasitologia , Lepidópteros , Pragas da Agricultura
8.
Neotrop Entomol ; 39(2): 260-5, 2010.
Artigo em Português | MEDLINE | ID: mdl-20498965

RESUMO

The velvetbean caterpillar Anticarsia gemmatalis Hübner attacks peanut leaves, and the use of resistant varieties has directly contributed to ecological and economic aspects of pest control. The aim of this work was to select resistant peanut genotypes to A. gemmatalis using cluster analyses (dendogram obtained by Ward's methods and K-means) and Principal Components analysis for data interpretation. The evaluated genotypes were: IAC 5, IAC 8112, IAC 22 and IAC Tatu ST with upright growth habit, and IAC 147, IAC 125, IAC Caiapó and IAC Runner 886 with runner growth habit, and soybean genotype BR 16 as a susceptible control. The biological parameters: leaf consumption, larval (4 masculine instar) and pupal (24h old) weight, larval and pupal development time and adult longevity were evaluated at laboratory conditions. The genotypes IAC 147 and IAC Runner 886 were resistant to A. gemmatalis in both cluster tests, grouping apart from most of the other genotypes. Both dendrogram and K-means methods provided satisfactory biological explanation, and they can be complementary used together with Principal Component and vice-versa. These results suggest that cluster analyses may be an important statistical tool in the selection of host plant resistance.


Assuntos
Arachis/genética , Arachis/parasitologia , Imunidade Inata/genética , Lepidópteros , Animais , Genótipo , Análise Multivariada
9.
Neotrop. entomol ; 39(2): 260-265, mar.-abr. 2010. ilus, tab, graf
Artigo em Português | LILACS | ID: lil-547690

RESUMO

The velvetbean caterpillar Anticarsia gemmatalis Hübner attacks peanut leaves, and the use of resistant varieties has directly contributed to ecological and economic aspects of pest control. The aim of this work was to select resistant peanut genotypes to A. gemmatalis using cluster analyses (dendogram obtained by Ward's methods and K-means) and Principal Components analysis for data interpretation. The evaluated genotypes were: IAC 5, IAC 8112, IAC 22 and IAC Tatu ST with upright growth habit, and IAC 147, IAC 125, IAC Caiapó and IAC Runner 886 with runner growth habit, and soybean genotype BR 16 as a susceptible control. The biological parameters: leaf consumption, larval (4º instar) and pupal (24h old) weight, larval and pupal development time and adult longevity were evaluated at laboratory conditions. The genotypes IAC 147 and IAC Runner 886 were resistant to A. gemmatalis in both cluster tests, grouping apart from most of the other genotypes. Both dendrogram and K-means methods provided satisfactory biological explanation, and they can be complementary used together with Principal Component and vice-versa. These results suggest that cluster analyses may be an important statistical tool in the selection of host plant resistance.


Assuntos
Animais , Arachis/genética , Arachis/parasitologia , Imunidade Inata/genética , Lepidópteros , Genótipo , Análise Multivariada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA