Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Top Dev Biol ; 131: 565-604, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30612631

RESUMO

Apomixis refers to a set of reproductive mechanisms that invariably rely on avoiding meiotic reduction and fertilization of the egg cell to generate clonal seeds. After having long been considered a strictly asexual oddity leading to extinction, the integration of more than 100 years of embryological, genetic, molecular, and ecological research has revealed apomixis as a widely spread component of the dynamic processes that shape flowering plant evolution. Apomixis involves several flexible and versatile developmental pathways that can be combined within the ovule to produce offspring. Here we review the large body of classic and contemporaneous contributions that have addressed unreduced gamete formation, haploid induction, and parthenogenesis in flowering plants. We emphasize similarities and differences between sexual and apomictic reproduction, and highlight their implications for the evolutionary emergence of asexual reproduction through seeds. On the basis of these comparisons, we propose a model that associates the developmental origin of apomixis to a dynamic epigenetic landscape, in which environmental fluctuations reversibly influence female reproductive development through mechanisms of hybridization and polyploidization.


Assuntos
Apomixia/fisiologia , Evolução Biológica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Magnoliopsida/crescimento & desenvolvimento , Proteínas de Plantas/genética , Magnoliopsida/genética
2.
Plant Mol Biol ; 96(1-2): 53-67, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29119346

RESUMO

KEY MESSAGE: ncRNA PN_LNC_N13 shows contrasting expression in reproductive organs of sexual and apomictic Paspalum notatum genotypes. Apomictic plants set genetically maternal seeds whose embryos derive by parthenogenesis from unreduced egg cells, giving rise to clonal offspring. Several Paspalum notatum apomixis related genes were identified in prior work by comparative transcriptome analyses. Here, one of these candidates (namely N13) was characterized. N13 belongs to a Paspalum gene family including 30-60 members, of which at least eight are expressed at moderate levels in florets. The sequences of these genes show no functional ORFs, but include segments of different protein coding genes. Particularly, N13 shows partial identity to maize gene BT068773 (RESPONSE REGULATOR 6). Secondary structure predictions as well as mature miRNA and target cleavage detection suggested that N13 is not a miRNA precursor. Moreover, N13 family members produce abundant 24-nucleotide small RNAs along extensive parts of their sequences. Surveys in the GREENC and CANTATA databases indicated similarity with plant long non-coding RNAs (lncRNAs) involved in splicing regulation; consequently, N13 was renamed as PN_LNC_N13. The Paspalum BT068773 predicted ortholog (N13TAR) originates floral transcript variants shorter than the canonical maize isoform and with possible structural differences between the apomictic and sexual types. PN_LNC_N13 is expressed only in apomictic plants and displays quantitative representation variation across reproductive developmental stages. However, PN_LNC_N13-like homologs and/or its derived sRNAs showed overall a higher representation in ovules of sexual plants at late premeiosis. Our results suggest the existence of a whole family of N13-like lncRNAs possibly involved in splicing regulation, with some members characterized by differential activity across reproductive types.


Assuntos
RNA Longo não Codificante/genética , Sementes/fisiologia , Apomixia/genética , Apomixia/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética
3.
Plant Biol (Stuttg) ; 18(1): 132-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26152277

RESUMO

Apomixis is an asexual seed reproduction mechanism thorough which embryos are originated from material tissues inside the ovules, without precedent fertilisation. It allows plants to colonise new habitats, even in places where flower visitors are scarce or where plants are isolate. Apomixis seems to be related to pollen sterility and, in species with flowers that offer pollen as a reward for pollinators, the amount or quality of the pollen offered by these species may influence the amount of the visits and specific composition of the visitors. In order to test this hypothesis, we studied breeding systems of 16 species of Melastomataceae and their flower visitors, evaluating composition and abundance of the visits to apomictic and sexual species. Apomictic plants with no viable pollen or with pollen with low viability did not receive visits from pollinators, and consequently probably produce strictly apomictic fruits. On the other hand, apomictic and sexual plants with high pollen viability do receive visits; in this case, apomictic plants may produce fruits and seeds through both sexual and apomictic methods. The species composition of insects visiting Melastomataceae with high pollen viability was similar, regardless of whether the plants were apomictic or not. It seems that pollen viability levels are important to determine visits to the flowers irrespective of breeding system.


Assuntos
Apomixia/fisiologia , Melastomataceae/fisiologia , Infertilidade das Plantas/fisiologia , Polinização/fisiologia , Animais , Brasil , Flores , Insetos , Pólen , Sementes
4.
Ann Bot ; 112(5): 767-87, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23864004

RESUMO

BACKGROUND: Apomixis is an alternative route of plant reproduction that produces individuals genetically identical to the mother plant through seeds. Apomixis is desirable in agriculture, because it guarantees the perpetuation of superior genotypes (i.e. heterotic hybrid seeds) by self-seeding without loss of hybrid vigour. The Paspalum genus, an archetypal model system for mining apomixis gene(s), is composed of about 370 species that have extremely diverse reproductive systems, including self-incompatibility, self-fertility, full sexual reproduction, and facultative or obligate apomixis. Barriers to interspecific hybridization are relaxed in this genus, allowing the production of new hybrids from many different parental combinations. Paspalum is also tolerant to various parental genome contributions to the endosperm, allowing analyses of how sexually reproducing crop species might escape from dosage effects in the endosperm. SCOPE: In this article, the available literature characterizing apomixis in Paspalum spp. and its use in breeding is critically reviewed. In particular, a comparison is made across species of the structure and function of the genomic region controlling apomixis in order to identify a common core region shared by all apomictic Paspalum species and where apomixis genes are likely to be localized. Candidate genes are discussed, either as possible genetic determinants (including homologs to signal transduction and RNA methylation genes) or as downstream factors (such as cell-to-cell signalling and auxin response genes) depending, respectively, on their co-segregation with apomixis or less. Strategies to validate the role of candidate genes in apomictic process are also discussed, with special emphasis on plant transformation in natural apomictic species.


Assuntos
Apomixia/fisiologia , Paspalum/fisiologia , Poaceae/fisiologia , Apomixia/genética , Cruzamento , Mapeamento Cromossômico , Genes de Plantas/genética , Paspalum/genética , Poaceae/genética , Reprodução , Transdução de Sinais , Transformação Genética
5.
Genet Mol Res ; 12(2): 988-94, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23613244

RESUMO

Cassava is the most important staple crop in the Tropics and Subtropics. Apomixis may revolutionize its production due to various attributes. These potential advantages include production by true seed, maintaining cultivar superiority over generations without segregation, and avoiding contamination by bacteria and viruses. Historically, apomixis was initially observed by International Institute of Tropical Agriculture researchers, in the 1980s, in homogenous progeny of hybrid crosses. Later, from 1980 through 2010, apomixis was extensively studied by Universidade de Brasília, in order to determine contributing mechanisms and occurrence. Apomixis genes occur naturally at low frequencies in cultivated cassava and can be transferred by crosses with wild species. Apparently, apomixis in cassava is controlled by more than one recessive gene, which act in an additive form. Aneuploidy is associated with apomixis in cassava and can provide the double dosages necessary for recessive gene action. By using molecular techniques, genetic homogeneous progeny has been demonstrated, while embryonic exams have shown nucellar multiembryos. Polyploidy was found to increase apomixis percentage. From an evolutionary viewpoint, polyploidy has contributed to production of new species, when combined with apomixis. Recently, somatic embryos have been detected in the integument, revealing a rare model of apomixis that has only been documented in cassava.


Assuntos
Apomixia/fisiologia , Manihot/fisiologia , Evolução Biológica , Cruzamento , Frequência do Gene , Genes de Plantas , Poliploidia
6.
Ann Bot ; 110(3): 667-79, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22751617

RESUMO

BACKGROUND AND AIMS: Apomictic plants are less dependent on pollinator services and able to occupy more diverse habitats than sexual species. However, such assumptions are based on temperate species, and comparable evaluation for species-rich Neotropical taxa is lacking. In this context, the Melastomataceae is a predominantly Neotropical angiosperm family with many apomictic species, which is common in the Campos Rupestres, endemism-rich vegetation on rocky outcrops in central Brazil. In this study, the breeding system of some Campo Rupestre Melastomataceae was evaluated, and breeding system studies for New World species were surveyed to test the hypothesis that apomixis is associated with wide distributions, whilst sexual species have more restricted areas. METHODS: The breeding systems of 20 Campo Rupestre Melastomataceae were studied using hand pollinations and pollen-tube growth analysis. In addition, breeding system information was compiled for 124 New World species of Melastomataceae with either wide (>1000 km) or restricted distributions. KEY RESULTS: Most (80 %) of the Campo Rupestre species studied were self-compatible. Self-incompatibility in Microlicia viminalis was associated with pollen-tube arrest in the style, as described for other Melastomataceae, but most self-incompatible species analysed showed pollen-tube growth to the ovary irrespective of pollination treatment. Apomictic species showed lower pollen viability and were less frequent among the Campo Rupestre plants. Among the New World species compiled, 43 were apomictic and 77 sexual (24 self-incompatible and 53 self-compatible). Most apomictic (86 %) and self-incompatible species (71 %) presented wide distributions, whilst restricted distributions predominate only among the self-compatible ones (53 %). CONCLUSIONS: Self-compatibility and dependence on biotic pollination were characteristic of Campo Rupestre and narrowly distributed New World Melastomataceae species, whilst apomictics are widely distributed. This is, to a certain extent, similar to the geographical parthenogenesis pattern of temperate apomictics.


Assuntos
Apomixia/fisiologia , Biodiversidade , Ecossistema , Melastomataceae/fisiologia , Tubo Polínico/crescimento & desenvolvimento , Polinização/fisiologia , Evolução Biológica , Brasil , Filogeografia , Clima Tropical
7.
Genet Mol Res ; 10(4): 2326-39, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22002126

RESUMO

Apomixis is a particular mode of reproduction that allows progeny formation without meiosis and fertilization. Eulaliopsis binata, a tetraploid apomictic species, is widely used for making paper, rope and mats. There is great potential for fixation of heterosis in E. binata due to autonomous endosperm formation in this species. Although most of its embryo sac originates from nucellus cells, termed apospory, we observed sexual reproduction initiation in 86.8 to 96.8% of the ovules, evidenced by callose deposition on the walls of cells undergoing megasporogenesis. However, only 2-3% mature polygonum-type sexual embryo sacs were confirmed by embryological investigation. Callose was not detected on aposporous initial cell walls. The aposporous initial cells differentiated during pre- and post-meiosis of the megaspore mother cell, while the sexual embryo sac degenerated at the megaspore stage. DNA content ratio of embryo and endosperm in some individuals was 2C:3C, based on flow cytometry screening of seed, similar to that of normal sexual seed. These results confirm that apomictic E. binata has conserved sexual reproduction to a certain degree, which may contribute to maintaining genetic diversity. The finding of sexual reproduction in apomictic E. binata could be useful for research on genetic mechanism of apomixis in E. binata.


Assuntos
Apomixia/fisiologia , Endosperma/embriologia , Variação Genética/fisiologia , Poaceae/fisiologia , Poliploidia , Endosperma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA