Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.275
Filtrar
1.
Stem Cell Res Ther ; 15(1): 301, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278909

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly progressive motoneuron degenerative disorder. There are still no drugs capable of slowing disease evolution or improving life quality of ALS patients. Thus, autologous stem cell therapy has emerged as an alternative treatment regime to be investigated in clinical ALS. METHOD: Using Proteomics and Protein-Protein Interaction Network analyses combined with bioinformatics, the possible cellular mechanisms and molecular targets related to mesenchymal stem cells (MSCs, 1 × 106 cells/kg, intrathecally in the lumbar region of the spine) were investigated in cerebrospinal fluid (CSF) of ALS patients who received intrathecal infusions of autologous bone marrow-derived MSCs thirty days after cell therapy. Data are available via ProteomeXchange with identifier PXD053129. RESULTS: Proteomics revealed 220 deregulated proteins in CSF of ALS subjects treated with MSCs compared to CSF collected from the same patients prior to MSCs infusion. Bioinformatics enriched analyses highlighted events of Extracellular matrix and Cell adhesion molecules as well as related key targets APOA1, APOE, APP, C4A, C5, FGA, FGB, FGG and PLG in the CSF of cell treated ALS subjects. CONCLUSIONS: Extracellular matrix and cell adhesion molecules as well as their related highlighted components have emerged as key targets of autologous MSCs in CSF of ALS patients. TRIAL REGISTRATION: Clinicaltrial.gov identifier NCT0291768. Registered 28 September 2016.


Assuntos
Esclerose Lateral Amiotrófica , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Proteômica , Transplante Autólogo , Humanos , Esclerose Lateral Amiotrófica/líquido cefalorraquidiano , Esclerose Lateral Amiotrófica/terapia , Esclerose Lateral Amiotrófica/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteômica/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/líquido cefalorraquidiano , Idoso , Apolipoproteína A-I/líquido cefalorraquidiano , Apolipoproteína A-I/metabolismo , Adulto , Células da Medula Óssea/metabolismo , Mapas de Interação de Proteínas
2.
Nat Commun ; 15(1): 8131, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284836

RESUMO

Hematopoietic stem cells (HSCs) react to various stress conditions. However, it is unclear whether and how HSCs respond to severe anemia. Here, we demonstrate that upon induction of acute anemia, HSCs rapidly proliferate and enhance their erythroid differentiation potential. In severe anemia, lipoprotein profiles largely change and the concentration of ApoE increases. In HSCs, transcription levels of lipid metabolism-related genes, such as very low-density lipoprotein receptor (Vldlr), are upregulated. Stimulation of HSCs with ApoE enhances their erythroid potential, whereas HSCs in Apoe knockout mice do not respond to anemia induction. VldlrhighHSCs show higher erythroid potential, which is enhanced after acute anemia induction. VldlrhighHSCs are epigenetically distinct because of their low chromatin accessibility, and more chromatin regions are closed upon acute anemia induction. Chromatin regions closed upon acute anemia induction are mainly binding sites of Erg. Inhibition of Erg enhanced the erythroid differentiation potential of HSCs. Our findings indicate that lipoprotein metabolism plays an important role in HSC regulation under severe anemic conditions.


Assuntos
Anemia , Apolipoproteínas E , Diferenciação Celular , Células-Tronco Hematopoéticas , Lipoproteínas , Animais , Anemia/metabolismo , Anemia/genética , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Lipoproteínas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/metabolismo , Receptores de LDL/genética , Masculino , Cromatina/metabolismo , Eritropoese/genética , Células Eritroides/metabolismo
3.
Cells ; 13(18)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39329770

RESUMO

Atherosclerosis is an autoimmune disease characterized by lipid imbalances and chronic inflammation within blood vessels, with limited preventive and treatment options currently available. In this study, a vaccine prepared with COL6A6 peptide (named the Pep_A6 vaccine) was administered to immunize Apoe-/- mice, and the immune mechanism of the Pep_A6 vaccine against atherosclerosis was first investigated. The results of arterial oil red O staining demonstrated that the Pep_A6 vaccine significantly reduced the atherosclerotic plaque area in Apoe-/- mice fed with a high-fat diet for 20 weeks. A flow cytometry analysis revealed that the Pep_A6 vaccine inhibited Th1 cell differentiation and increased the proportion of Treg cells. Furthermore, there was a significant increase in Ly6Clow monocytes observed in the vaccinated group. The ELISA results showed that the Pep_A6 vaccine induced a significant expression of Pep_A6-specific antibody IgG and IgG1 in mouse serum. Additionally, we found that the Pep_A6 vaccine significantly decreased serum LDL-C content and regulated the expression of genes related to liver lipid metabolism. Together, our findings suggest that the Pep_A6 vaccine alleviates atherosclerosis by inducing a positive immune response and regulating lipid metabolism, providing new insights into potential prevention strategies for atherosclerosis as an innovative vaccine.


Assuntos
Apolipoproteínas E , Aterosclerose , Colágeno Tipo VI , Metabolismo dos Lipídeos , Vacinas de Subunidades Antigênicas , Animais , Aterosclerose/imunologia , Aterosclerose/prevenção & controle , Camundongos , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Vacinas de Subunidades Antigênicas/imunologia , Colágeno Tipo VI/metabolismo , Camundongos Endogâmicos C57BL , Placa Aterosclerótica/imunologia , Masculino , Imunidade , Camundongos Knockout , Dieta Hiperlipídica , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Modelos Animais de Doenças , Células Th1/imunologia , Vacinas de Subunidades Proteicas
4.
Int J Mol Sci ; 25(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39337551

RESUMO

In vivo proton (1H) magnetic resonance spectroscopy (MRS) is a powerful non-invasive method that can measure Alzheimer's disease (AD)-related neuropathological alterations at the molecular level. AD biomarkers include amyloid-beta (Aß) plaques and hyperphosphorylated tau neurofibrillary tangles. These biomarkers can be detected via postmortem analysis but also in living individuals through positron emission tomography (PET) or biofluid biomarkers of Aß and tau. This review offers an overview of biochemical abnormalities detected by 1H MRS within the biologically defined AD spectrum. It includes a summary of earlier studies that explored the association of 1H MRS metabolites with biofluid, PET, and postmortem AD biomarkers and examined how apolipoprotein e4 allele carrier status influences brain biochemistry. Studying these associations is crucial for understanding how AD pathology affects brain homeostasis throughout the AD continuum and may eventually facilitate the development of potential novel therapeutic approaches.


Assuntos
Doença de Alzheimer , Biomarcadores , Tomografia por Emissão de Pósitrons , Espectroscopia de Prótons por Ressonância Magnética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Humanos , Tomografia por Emissão de Pósitrons/métodos , Biomarcadores/metabolismo , Espectroscopia de Prótons por Ressonância Magnética/métodos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Genótipo , Proteínas tau/metabolismo , Proteínas tau/genética , Peptídeos beta-Amiloides/metabolismo
5.
Cell Death Dis ; 15(9): 689, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304654

RESUMO

Recent research has explored the potential of the demethylating drug 5-azacytidine (Aza) as therapy for a range of diseases. However, the therapeutic efficacy of Aza for patients of atherosclerosis remains unclear. This study investigates the therapeutic application of Aza to atherosclerosis in order to elucidate the underlying mechanisms. We generated induced Tregs (iTregs) from CD4+ T cells by using Aza in vitro, and this was followed by the intravenous infusion of iTregs for the treatment of atherosclerosis. The adoptive transfer of Aza-iTreg significantly increased peripheral blood Treg cells, suppressed inflammation, and attenuated atherosclerosis in ApoE-/- mice. Furthermore, we observed a notable demethylation of the Forkhead box P3 (Foxp3)-regulatory T cell-specific demethylated region (TSDR) and an upregulation of Foxp3 expression in the CD4+ T cells in the spleen of the ApoE-/- mice following the transfer of Aza- iTregs. We also demonstrated that Aza converted naive CD4+ T cells into Tregs by DNA methyltransferase 1 (Dnmt1)-mediated Foxp3-TSDR demethylation and the upregulation of Foxp3 expression. Conversely, the overexpression of Dnmt1 in the CD4+ T cells attenuated the Aza-induced Foxp3-TSDR demethylation and upregulation of Foxp3 expression. Our results reveal that Aza converts naive CD4+ T cells into functional Tregs by inhibiting Dnmt1, and the transfer of Aza-iTregs suppresses atherosclerosis in mice.


Assuntos
Aterosclerose , Azacitidina , Linfócitos T CD4-Positivos , Epigênese Genética , Fatores de Transcrição Forkhead , Linfócitos T Reguladores , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Azacitidina/farmacologia , Camundongos , Fatores de Transcrição Forkhead/metabolismo , Epigênese Genética/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Camundongos Endogâmicos C57BL , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Masculino , Humanos
6.
Food Funct ; 15(19): 9796-9812, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39229645

RESUMO

Fat is a "double-edged sword": while it is a necessary substance for the body, the long-term intake of excessive fat will cause obesity, with the liver subjected to lipotoxicity as it accumulates. It will then continue to deteriorate, eventually leading to liver failure, which is a negative impact of high-fat food intake. Research has shown that exercise can reverse the side effects of a chronic high-fat diet and help the body to mitigate the harmful effects of lipotoxicity. In our study, it was found that moderate-intensity cardio-training (MICT) and high-intensity interval exercise (HIIT) effectively protected the livers of high-fat diet (HFD) ApoE-/- mice against lipotoxicity. Previous results demonstrated that 12 weeks of HFD resulted in a significant elevation of CD36 in the livers of C57BL/6J mice, while knockdown of CD36 did not reduce the accumulation of fat in the liver. Therefore, we used ApoE-/- mice as experimental subjects. Although HFD caused the development of hyperlipidemia and atherosclerosis, it is interesting to note that, due to the knockdown of ApoE, the livers of ApoE-/- mice in the non-exercise group did not show significant lipid deposition; however, after 12 weeks of MICT and HIIT, the livers of ApoE-/- mice showed significant lipid deposition. After we analyzed the lipid metabolism in their livers, we found that this was caused by the promotion of transport of peripheral fat into the liver due to exercise. Moreover, 12 weeks of exercise effectively reduced atherosclerosis, and the livers of ApoE-/- mice in the exercise group were not damaged by lipotoxicity. The results showed that a 12-week exercise treatment activated AMPK in the livers of HFD ApoE-/- mice through the APN-AdipoR1 signaling pathway, improved hepatic lipid metabolism disorders, and promoted the nuclear translocation of TFEB to enhance autophagic-lysosomal lipid scavenging. After the peripheral lipid is input into the liver due to exercise, the energy generated through gluconeogenesis can be used to replenish the energy consumed by exercise and maintain the normal operation of various functions in the liver, based on which the high autophagic flux in the liver can be maintained and the lipid clearance rate can be enhanced to protect the liver from lipotoxicity.


Assuntos
Adiponectina , Apolipoproteínas E , Dieta Hiperlipídica , Fígado , Camundongos Endogâmicos C57BL , Condicionamento Físico Animal , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Fígado/metabolismo , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Masculino , Adiponectina/metabolismo , Lisossomos/metabolismo , Camundongos Knockout
7.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273325

RESUMO

Cosmic radiation experienced during space travel may increase the risk of cognitive impairment. While simulated galactic cosmic radiation (GCRsim) has led to memory deficits in wildtype (WT) mice, it has not been investigated whether GCRsim in combination with genetic risk factors for Alzheimer's disease (AD) worsens memory further in aging mice. Here, we investigated the central nervous system (CNS) effects of 0 Gy (sham) or 0.75 Gy five-ion GCRsim or 2 Gy gamma radiation (IRR) in 14-month-old female and male APPNL-F/NL-F knock-in (KI) mice bearing humanized ApoE3 or ApoE4 (APP;E3F and APP;E4F). As travel to a specialized facility was required for irradiation, both traveled sham-irradiated C57BL/6J WT and KI mice and non-traveled (NT) KI mice acted as controls for potential effects of travel. Mice underwent four behavioral tests at 20 months of age and were euthanized for pathological and biochemical analyses 1 month later. Fecal samples were collected pre- and post-irradiation at four different time points. GCRsim seemed to impair memory in male APP;E3F mice compared to their sham counterparts. Travel tended to improve cognition in male APP;E3F mice and lowered total Aß in female and male APP;E3F mice compared to their non-traveled counterparts. Sham-irradiated male APP;E4F mice accumulated more fibrillar amyloid than their APP;E3F counterparts. Radiation exposure had only modest effects on behavior and brain changes, but travel-, sex-, and genotype-specific effects were seen. Irradiated mice had immediate and long-term differences in their gut bacterial composition that correlated to Alzheimer's disease phenotypes.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Cognição , Radiação Cósmica , Camundongos Transgênicos , Animais , Feminino , Masculino , Radiação Cósmica/efeitos adversos , Camundongos , Cognição/efeitos da radiação , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Técnicas de Introdução de Genes , Camundongos Endogâmicos C57BL , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Modelos Animais de Doenças , Fatores Sexuais , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Humanos
8.
Drug Des Devel Ther ; 18: 4033-4049, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39280256

RESUMO

Purpose: This study was designed to evaluate the effect and mechanism of the Qushi Huatan (QSHT) decoction against coronary heart disease (CHD) through network pharmacology and experimental verification. Methods: In the present study, the active ingredients of the QSHT decoction were identified by ultra performance liquid chromatography/tandem mass spectrometry (UPLC/MS), then the potential ingredients and coronary heart disease targets were predicted using the SwissTarget Prediction database and the database of Genecards and OMIM database, respectively. A herb-compound-target network was constructed using Cytoscape. GO and KEGG enrichment analysis were performed using the ClusterProfiler data package of R software. Molecular docking was used to predict the core targets of QSHT against CHD. In addition, we used a myocardial infarction (MI) and high-fat diet ApoE-/- mice model to investigate the cardioprotective effects of QSHT. Western blotting and immunochemistry were used to verify the core targets and the signaling pathway. Results: A total of 68 active ingredients were found in the QSHT decoction. Network pharmacology indicated 28 targets and 147 signal pathways, including AKT1, HIF-1α, GSK-3ß, TLR4 and NF-κB, those key targets were also verified by molecular docking. The results of GO and KEGG enrichment analysis showed that the targets of QSHT against CHD were largely associated with inflammatory and oxidative stress, and AKT/HIF-1α and TLR4/NF-κB pathways might be key functional pathways. In vivo, QSHT significantly improved cardiac function and attenuated fibrosis and inflammation. Furthermore, QSHT could significantly inhibit the expression of HIF-1α, TLR4, phosphorylation of AKT1, GSK-3ß and NF-κB after MI in ApoE-/- mice. Conclusion: Based on network pharmacology, molecular docking and experimental verification, this study demonstrated that QSHT could improve cardiac function and attenuate cardiac fibrosis by regulating TLR4/NF-κB and AKT/HIF-1α signaling pathway in post- MI and high-fat diet ApoE-/- mice.


Assuntos
Doença das Coronárias , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Camundongos , Doença das Coronárias/tratamento farmacológico , Doença das Coronárias/metabolismo , Masculino , Modelos Animais de Doenças , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas em Tandem , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética
9.
Front Biosci (Landmark Ed) ; 29(9): 339, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39344333

RESUMO

BACKGROUND: C1q/tumor necrosis factor-related protein-9 (CTRP9) is critically involved in the pathophysiology of metabolic and cardiovascular disorders. This investigation aimed to clarify the mechanism underlying the role of CTRP9 in atherosclerosis in apolipoprotein E (ApoE) knockout (KO) mice. METHODS: ApoE KO mice were fed a Western diet and injected with a virus which resulted in CTRP9 overexpression or knockdown for 12 weeks. The plasma lipid levels and atherosclerotic plaque areas were measured after the mice were euthanized. Aortas were isolated, and RNA sequencing was performed to identify the differentially expressed genes and related signaling pathways. Finally, plasma oxidative stress factors were measured to demonstrate the reliability of the RNA sequencing results. RESULTS: The plasma lipid levels in the CTRP9 overexpression group did not significantly differ from those in the green fluorescence protein (GFP) group. Markablely, CTRP9 overexpression inhibited atherosclerotic plaque formation in ApoE KO mice, whereas CTRP9 knockdown promoted plaque formation. RNA sequencing analysis identified 3485 differentially expressed genes that were prominently enriched across 55 signaling pathways. Additionally, plasma oxidative stress factors were significantly reduced after CTRP9 overexpression, whereas these factors were increased after CTRP9 knockdown, which was consistent with the results of the RNA sequencing analysis. CONCLUSIONS: These findings demonstrated that CTRP9 alleviated inflammation and cholesterol metabolism, which reduced oxidative stress in an atherosclerotic animal model. These beneficial effects may mediate the suppression of lesion development in the aorta.


Assuntos
Apolipoproteínas E , Aterosclerose , Estresse Oxidativo , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Masculino , Camundongos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Adiponectina/sangue , Camundongos Knockout para ApoE , Camundongos Knockout , Transdução de Sinais , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Aorta/metabolismo , Aorta/patologia , Camundongos Endogâmicos C57BL , Adipocinas/metabolismo , Adipocinas/genética , Lipídeos/sangue , Glicoproteínas/genética , Glicoproteínas/metabolismo
10.
Cell Rep ; 43(9): 114691, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39235944

RESUMO

The strategy of lowering cholesterol levels by promoting cholesterol excretion is still lacking, and few molecular targets act on multiple cholesterol metabolic processes. In this study, we find that Nogo-B deficiency/inhibition simultaneously promotes hepatic uptake of cholesterol and cholesterol excretion. Nogo-B deficiency decreases cholesterol levels by activating ATP-binding cassette transporters (ABCs), apolipoprotein E (ApoE), and low-density lipoprotein receptor (LDLR) expression. We discover that Nogo-B interacts with liver X receptor α (LXRα), and Nogo-B deficiency inhibits ubiquitination degradation of LXRα, thereby enhancing its function on cholesterol excretion. Decreased cellular cholesterol levels further activate SREBP2 and LDLR expression, thereby promoting hepatic uptake of cholesterol. Nogo-B inhibition decreases atherosclerotic plaques and cholesterol levels in mice, and Nogo-B levels are correlated to cholesterol levels in human plasma. In this study, Nogo-B deficiency/inhibition not only promotes hepatic uptake of blood cholesterol but also facilitates cholesterol excretion. This study reports a strategy to lower cholesterol levels by inhibiting Nogo-B expression to promote hepatic cholesterol uptake and cholesterol excretion.


Assuntos
Colesterol , Hipercolesterolemia , Proteínas Nogo , Receptores de LDL , Animais , Humanos , Masculino , Camundongos , Apolipoproteínas E/metabolismo , Colesterol/metabolismo , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Fígado/metabolismo , Receptores X do Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nogo/antagonistas & inibidores , Proteínas Nogo/metabolismo , Receptores de LDL/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Ubiquitinação
11.
Int Immunopharmacol ; 140: 112834, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39116495

RESUMO

BACKGROUND: Atherosclerotic (AS) plaques require a dense necrotic core and a robust fibrous cap to maintain stability. While previous studies have indicated that the traditional Chinese medicine Huang Lian Jie Du Decoction (HLJDD) possesses the capability to stabilize AS plaques, the underlying mechanisms remain obscure. This study aims to delve deeper into the potential mechanisms by which HLJDD improves AS through an integrated research strategy. METHODS: Leveraging an AS model in ApoE-/- mice exposed to a high-fat diet (HFD), we scrutinized the therapeutic effects of HLJDD using microscopic observations, oil red O staining, HE staining and Masson staining. Employing comprehensive techniques of network pharmacology, bioinformatics, and molecular docking, we elucidated the mechanism by which HLJDD stabilizes AS plaques. In vitro experiments, utilizing ox-LDL-induced macrophages and apoptotic vascular smooth muscle cells (VSMCs), assessed the impact of HLJDD on efferocytosis and the role of SLC2A1. RESULTS: In vivo experiments showcased the efficacy of HLJDD in reducing the quantity of aortic plaques, diminishing lipid deposition, and enhancing plaque stability in AS mice. Employing network pharmacology and machine learning, we pinpointed SLC2A1 as a crucial regulatory target. Molecular docking further validated the binding of HLJDD components with SLC2A1. The experiments demonstrated a dose-dependent upregulation in SLC2A1 expression by HLJDD, amplifying efferocytosis. Importantly, this effect was reversed by the SLC2A1 inhibitor STF-31, highlighting the pivotal role of SLC2A1 as a target. CONCLUSION: The HLJDD can modulate macrophage efferocytosis by enhancing the expression levels of SLC2A1, thereby improving the stability of atherosclerotic plaques.


Assuntos
Medicamentos de Ervas Chinesas , Transportador de Glucose Tipo 1 , Macrófagos , Placa Aterosclerótica , Animais , Placa Aterosclerótica/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Camundongos , Masculino , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Fagocitose/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Modelos Animais de Doenças , Apoptose/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Lipoproteínas LDL/metabolismo , Células RAW 264.7 , Camundongos Knockout para ApoE , Eferocitose
12.
Nat Commun ; 15(1): 7337, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187565

RESUMO

There is a large body of evidence that cellular metabolism governs inflammation, and that inflammation contributes to the progression of atherosclerosis. However, whether mitochondrial DNA synthesis affects macrophage function and atherosclerosis pathology is not fully understood. Here we show, by transcriptomic analyzes of plaque macrophages, spatial single cell transcriptomics of atherosclerotic plaques, and functional experiments, that mitochondrial DNA (mtDNA) synthesis in atherosclerotic plaque macrophages are triggered by vascular cell adhesion molecule 1 (VCAM-1) under inflammatory conditions in both humans and mice. Mechanistically, VCAM-1 activates C/EBPα, which binds to the promoters of key mitochondrial biogenesis genes - Cmpk2 and Pgc1a. Increased CMPK2 and PGC-1α expression triggers mtDNA synthesis, which activates STING-mediated inflammation. Consistently, atherosclerosis and inflammation are less severe in Apoe-/- mice lacking Vcam1 in macrophages. Downregulation of macrophage-specific VCAM-1 in vivo leads to decreased expression of LYZ1 and FCOR, involved in STING signalling. Finally, VCAM-1 expression in human carotid plaque macrophages correlates with necrotic core area, mitochondrial volume, and oxidative damage to DNA. Collectively, our study highlights the importance of macrophage VCAM-1 in inflammation and atherogenesis pathology and proposes a self-acerbating pathway involving increased mtDNA synthesis.


Assuntos
Aterosclerose , DNA Mitocondrial , Inflamação , Macrófagos , Proteínas de Membrana , Placa Aterosclerótica , Molécula 1 de Adesão de Célula Vascular , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Animais , Molécula 1 de Adesão de Célula Vascular/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Macrófagos/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Camundongos , Placa Aterosclerótica/patologia , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Masculino , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Camundongos Knockout para ApoE , Transdução de Sinais , Feminino , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo
13.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(8): 159559, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39179098

RESUMO

Trimethylamine N-oxide (TMAO), a metabolite produced by intestinal flora, is recognized as an independent risk factor for atherosclerosis and atherosclerotic cardiovascular diseases. However, the underlying mechanism remains poorly understood. Here, we showed that dietary TMAO supplementation accelerates atherosclerosis in ApoE-/- mice. Pyroptosis and the expression of phospholipid-modifying enzyme MBOAT2 were increased in endothelial cells within atherosclerotic lesions. Genetic upregulation of MBOAT2 via adeno-associated virus with endothelium-specific promoter results in increased atherosclerotic lesions in ApoE-/- mice. Mechanistically, the overexpression of MBOAT2 disrupted glycerophospholipid metabolism and induced endothelial cell pyroptosis in an Endoplasmic reticulum stress-dependent manner. These data reveal that TMAO promotes endothelial cell pyroptosis and the progression of atherosclerotic lesions through the upregulation of MBOAT2, indicating that MBOAT2 is a promising therapeutic target for atherosclerosis.


Assuntos
Aterosclerose , Células Endoteliais , Metilaminas , Piroptose , Animais , Humanos , Masculino , Camundongos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Estresse do Retículo Endoplasmático , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/efeitos dos fármacos , Metilaminas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigenases
14.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167479, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39181516

RESUMO

Intracellular cholesterol metabolism is regulated by the SREBP-2 and LXR signaling pathways. The effects of inflammation on these molecular mechanisms remain poorly studied, especially at the blood-brain barrier (BBB) level. Tumor necrosis factor α (TNFα) is a proinflammatory cytokine associated with BBB dysfunction. Therefore, the aim of our study was to investigate the effects of TNFα on BBB cholesterol metabolism, focusing on its underlying signaling pathways. Using a human in vitro BBB model composed of human brain-like endothelial cells (hBLECs) and brain pericytes (HBPs), we observed that TNFα increases BBB permeability by degrading the tight junction protein CLAUDIN-5 and activating stress signaling pathways in both cell types. TNFα also promotes cholesterol release and decreases cholesterol accumulation and APOE secretion. In hBLECs, the expression of SREBP-2 targets (LDLR and HMGCR) is increased, while ABCA1 expression is decreased. In HBPs, only LDLR and ABCA1 expression is increased. TNFα treatment also induces 25-hydroxycholesterol (25-HC) production, a cholesterol metabolite involved in the immune response and intracellular cholesterol metabolism. 25-HC pretreatment attenuates TNFα-induced BBB leakage and partially alleviates the effects of TNFα on ABCA1, LDLR, and HMGCR expression. Overall, our results suggest that TNFα favors cholesterol efflux via an LXR/ABCA1-independent mechanism at the BBB, while it activates the SREBP-2 pathway. Treatment with 25-HC partially reversed the effect of TNFα on the LXR/SREBP-2 pathways. Our study provides novel perspectives for better understanding cerebrovascular signaling events linked to BBB dysfunction and cholesterol metabolism in neuroinflammatory diseases.


Assuntos
Barreira Hematoencefálica , Colesterol , Células Endoteliais , Hidroxicolesteróis , Proteína de Ligação a Elemento Regulador de Esterol 2 , Fator de Necrose Tumoral alfa , Hidroxicolesteróis/farmacologia , Hidroxicolesteróis/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Colesterol/metabolismo , Receptores de LDL/metabolismo , Receptores de LDL/genética , Transdução de Sinais/efeitos dos fármacos , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Pericitos/metabolismo , Pericitos/efeitos dos fármacos , Pericitos/patologia , Hidroximetilglutaril-CoA Redutases/metabolismo , Hidroximetilglutaril-CoA Redutases/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Receptores X do Fígado/metabolismo , Receptores X do Fígado/genética , Células Cultivadas
15.
Nucleic Acids Res ; 52(17): 10235-10254, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39162226

RESUMO

Enhancers, critical regulatory elements within the human genome, are often transcribed into enhancer RNAs. The dysregulation of enhancers leads to diseases collectively termed enhanceropathies. While it is known that enhancers play a role in diseases by regulating gene expression, the specific mechanisms by which individual enhancers cause diseases are not well understood. Studies of individual enhancers are needed to fill this gap. This study delves into the role of APOE-activating noncoding RNA, AANCR, in the central nervous system, elucidating its function as a genetic modifier in Alzheimer's Disease. We employed RNA interference, RNaseH-mediated degradation, and single-molecule RNA fluorescence in situ hybridization to demonstrate that mere transcription of AANCR is insufficient; rather, its transcripts are crucial for promoting APOE expression. Our findings revealed that AANCR is induced by ATM-mediated ERK phosphorylation and subsequent AP-1 transcription factor activation. Once activated, AANCR enhances APOE expression, which in turn imparts an inflammatory phenotype to astrocytes. These findings demonstrate that AANCR is a key enhancer RNA in some cell types within the nervous system, pivotal for regulating APOE expression and influencing inflammatory responses, underscoring its potential as a therapeutic target in neurodegenerative diseases.


Assuntos
Apolipoproteínas E , Astrócitos , Elementos Facilitadores Genéticos , Microglia , Astrócitos/metabolismo , Microglia/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Humanos , Animais , Regulação da Expressão Gênica , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Camundongos , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-1/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Células Cultivadas , Fosforilação , RNAs Intensificadores
16.
Theranostics ; 14(11): 4256-4277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113793

RESUMO

Rationale: Posttranslational modifications of proteins have not been addressed in studies aimed at elucidating the cardioprotective effect of exercise in atherosclerotic cardiovascular disease (ASCVD). In this study, we reveal a novel mechanism by which exercise ameliorates atherosclerosis via lactylation. Methods: Using ApoE-/- mice in an exercise model, proteomics analysis was used to identify exercise-induced specific lactylation of MeCP2 at lysine 271 (K271). Mutation of the MeCP2 K271 lactylation site in aortic plaque macrophages was achieved by recombinant adenoviral transfection. Explore the molecular mechanisms by which motility drives MeCP2 K271 lactylation to improve plaque stability using ATAC-Seq, CUT &Tag and molecular biology. Validation of the potential target RUNX1 for exercise therapy using Ro5-3335 pharmacological inhibition. Results: we showed that in ApoE-/- mice, methyl-CpG-binding protein 2 (MeCP2) K271 lactylation was observed in aortic root plaque macrophages, promoting pro-repair M2 macrophage polarization, reducing the plaque area, shrinking necrotic cores, reducing plaque lipid deposition, and increasing collagen content. Adenoviral transfection, by introducing a mutant at lysine 271, overexpressed MeCP2 K271 lactylation, which enhanced exercise-induced M2 macrophage polarization and increased plaque stability. Mechanistically, the exercise-induced atheroprotective effect requires an interaction between MeCP2 K271 lactylation and H3K36me3, leading to increased chromatin accessibility and transcriptional repression of RUNX1. In addition, the pharmacological inhibition of the transcription factor RUNX1 exerts atheroprotective effects by promoting the polarization of plaque macrophages towards the pro-repair M2 phenotype. Conclusions: These findings reveal a novel mechanism by which exercise ameliorates atherosclerosis via MeCP2 K271 lactylation-H3K36me3/RUNX1. Interventions that enhance MeCP2 K271 lactylation have been shown to increase pro-repair M2 macrophage infiltration, thereby promoting plaque stabilization and reducing the risk of atherosclerotic cardiovascular disease. We also established RUNX1 as a potential drug target for exercise therapy, thereby providing guidance for the discovery of new targets.


Assuntos
Apolipoproteínas E , Aterosclerose , Macrófagos , Proteína 2 de Ligação a Metil-CpG , Animais , Humanos , Masculino , Camundongos , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Modelos Animais de Doenças , Macrófagos/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos Endogâmicos C57BL , Condicionamento Físico Animal , Placa Aterosclerótica/metabolismo , Processamento de Proteína Pós-Traducional
17.
FASEB J ; 38(15): e23850, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39091212

RESUMO

Atherosclerosis is a leading cause of cardiovascular diseases (CVDs), often resulting in major adverse cardiovascular events (MACEs), such as myocardial infarction and stroke due to the rupture or erosion of vulnerable plaques. Ferroptosis, an iron-dependent form of cell death, has been implicated in the development of atherosclerosis. Despite its involvement in CVDs, the specific role of ferroptosis in atherosclerotic plaque stability remains unclear. In this study, we confirmed the presence of ferroptosis in unstable atherosclerotic plaques and demonstrated that the ferroptosis inhibitor ferrostatin-1 (Fer-1) stabilizes atherosclerotic plaques in apolipoprotein E knockout (Apoe-/-) mice. Using bioinformatic analysis combining RNA sequencing (RNA-seq) with single-cell RNA sequencing (scRNA-seq), we identified Yes-associated protein 1 (YAP1) as a potential key regulator of ferroptosis in vascular smooth muscle cells (VSMCs) of unstable plaques. In vitro, we found that YAP1 protects against oxidized low-density lipoprotein (oxLDL)-induced ferroptosis in VSMCs. Mechanistically, YAP1 exerts its anti-ferroptosis effects by regulating the expression of glutaminase 1 (GLS1) to promote the synthesis of glutamate (Glu) and glutathione (GSH). These findings establish a novel mechanism where the inhibition of ferroptosis promotes the stabilization of atherosclerotic plaques through the YAP1/GLS1 axis, attenuating VSMC ferroptosis. Thus, targeting the YAP1/GLS1 axis to suppress VSMC ferroptosis may represent a novel strategy for preventing and treating unstable atherosclerotic plaques.


Assuntos
Ferroptose , Músculo Liso Vascular , Placa Aterosclerótica , Proteínas de Sinalização YAP , Animais , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Camundongos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Proteínas de Sinalização YAP/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Camundongos Knockout , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fenilenodiaminas/farmacologia , Cicloexilaminas/farmacologia , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética
18.
Proc Natl Acad Sci U S A ; 121(35): e2405845121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39178231

RESUMO

Atherosclerosis is a chronic inflammatory disease of the arterial wall characterized by the accumulation of cholesterol-rich lipoproteins in macrophages. How macrophages commit to proinflammatory polarization under atherosclerosis conditions is not clear. Report here that the level of a circulating protein, leucine-rich alpha-2 glycoprotein 1 (LRG1), is elevated in the atherosclerotic tissue and serum samples from patients with coronary artery disease (CAD). LRG1 stimulated macrophages to proinflammatory M1-like polarization through the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) pathways. The LRG1 knockout mice showed significantly delayed atherogenesis progression and reduced levels of macrophage-related proinflammatory cytokines in a high-fat diet-induced Apoe-/- mouse atherosclerosis model. An anti-LRG1 neutralizing antibody also effectively blocked LRG1-induced macrophage M1-like polarization in vitro and conferred therapeutic benefits to animals with ApoE deficiency-induced atherosclerosis. LRG1 may therefore serve as an additional biomarker for CAD and targeting LRG1 could offer a potential therapeutic strategy for CAD patients by mitigating the proinflammatory response of macrophages.


Assuntos
Aterosclerose , Glicoproteínas , Macrófagos , Animais , Aterosclerose/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/imunologia , Macrófagos/metabolismo , Macrófagos/imunologia , Camundongos , Humanos , Glicoproteínas/metabolismo , Glicoproteínas/genética , Camundongos Knockout , Masculino , Apolipoproteínas E/genética , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Modelos Animais de Doenças , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Doença da Artéria Coronariana/patologia , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/imunologia , Feminino , Camundongos Knockout para ApoE , Ativação de Macrófagos
19.
Nat Cardiovasc Res ; 3(8): 933-950, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39196035

RESUMO

Valve remodeling is a process involving extracellular matrix organization and elongation of valve leaflets. Here, through single-cell RNA sequencing of human fetal valves, we identified an elastin-producing valve interstitial cell (VIC) subtype (apolipoprotein E (APOE)+, elastin-VICs) spatially located underneath valve endothelial cells (VECs) sensing unidirectional flow. APOE knockdown in fetal VICs resulted in profound elastogenesis defects. In valves with pulmonary stenosis (PS), we observed elastin fragmentation and decreased expression of APOE along with other genes regulating elastogenesis. Cell-cell interaction analysis revealed that jagged 1 (JAG1) from unidirectional VECs activates elastogenesis in elastin-VICs through NOTCH2. Similar observations were made in VICs cocultured with VECs under unidirectional flow. Notably, a drastic reduction of JAG1-NOTCH2 was also observed in PS valves. Lastly, we found that APOE controls JAG1-induced NOTCH activation and elastogenesis in VICs through the extracellular signal-regulated kinase pathway. Our study suggests important roles of both APOE and NOTCH in regulating elastogenesis during human valve remodeling.


Assuntos
Apolipoproteínas E , Elastina , Células Endoteliais , Proteína Jagged-1 , Transdução de Sinais , Humanos , Proteína Jagged-1/metabolismo , Proteína Jagged-1/genética , Elastina/metabolismo , Elastina/genética , Células Endoteliais/metabolismo , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Receptor Notch2/metabolismo , Receptor Notch2/genética , Células Cultivadas , Valva Pulmonar/metabolismo , Técnicas de Cocultura , Comunicação Celular/fisiologia , Valvas Cardíacas/embriologia , Valvas Cardíacas/metabolismo
20.
Int J Mol Sci ; 25(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39062998

RESUMO

The objective of this study was to elucidate the protective role of quercetin in atherosclerosis by examining its effect on the phenotypic switch of vascular smooth muscle cells (VSMCs) to macrophage-like cells and the underlying regulatory pathways. Aorta tissues from apolipoprotein E-deficient (ApoE KO) mice fed a high-fat diet (HFD), treated with or without 100 mg/kg/day quercetin, were analyzed for histopathological changes and molecular mechanisms. Quercetin was found to decrease the size of atherosclerotic lesions and mitigate lipid accumulation induced by HFD. Fluorescence co-localization analysis revealed a higher presence of macrophage-like vascular smooth muscle cells (VSMCs) co-localizing with phospho-Janus kinase 2 (p-JAK2), phospho-signal transducer and activator of transcription 3 (p-STAT3), and Krüppel-like factor 4 (KLF4) in regions of foam cell aggregation within aortic plaques. However, this co-localization was reduced following treatment with quercetin. Quercetin treatment effectively inhibited the KLF4-mediated phenotypic switch in oxidized low-density lipoprotein (ox-LDL)-loaded mouse aortic vascular smooth muscle cells (MOVAS), as indicated by decreased expressions of KLF4, LGALS3, CD68, and F4/80, increased expression of alpha smooth muscle actin (α-SMA), reduced intracellular fluorescence Dil-ox-LDL uptake, and decreased lipid accumulation. In contrast, APTO-253, a KLF4 activator, was found to reverse the effects of quercetin. Furthermore, AG490, a JAK2 inhibitor, effectively counteracted the ox-LDL-induced JAK2/STAT3 pathway-dependent switch to a macrophage-like phenotype and lipid accumulation in MOVAS cells. These effects were significantly mitigated by quercetin but exacerbated by coumermycin A1, a JAK2 activator. Our research illustrates that quercetin inhibits the KLF4-mediated phenotypic switch of VSMCs to macrophage-like cells and reduces atherosclerosis by suppressing the JAK2/STAT3 pathway.


Assuntos
Aterosclerose , Macrófagos , Músculo Liso Vascular , Miócitos de Músculo Liso , Quercetina , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Masculino , Camundongos , Aorta/metabolismo , Aorta/efeitos dos fármacos , Aorta/patologia , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Dieta Hiperlipídica/efeitos adversos , Janus Quinase 2/metabolismo , Fator 4 Semelhante a Kruppel/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Fenótipo , Quercetina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA