Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1201: 275-353, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31898792

RESUMO

Extracellular purines exert several functions in physiological and pathophysiological mechanisms. ATP acts through P2 receptors as a neurotransmitter and neuromodulator and modulates heart contractility, while adenosine participates in neurotransmission, blood pressure, and many other mechanisms. Because of their capability to differentiate into mature cell types, they provide a unique therapeutic strategy for regenerating damaged tissue, such as in cardiovascular and neurodegenerative diseases. Purinergic signaling is pivotal for controlling stem cell differentiation and phenotype determination. Proliferation, differentiation, and apoptosis of stem cells of various origins are regulated by purinergic receptors. In this chapter, we selected neurodegenerative and cardiovascular diseases with clinical trials using cell therapy and purinergic receptor targeting. We discuss these approaches as therapeutic alternatives to neurodegenerative and cardiovascular diseases. For instance, promising results were demonstrated in the utilization of mesenchymal stem cells and bone marrow mononuclear cells in vascular regeneration. Regarding neurodegenerative diseases, in general, P2X7 and A2A receptors mostly worsen the degenerative state. Stem cell-based therapy, mainly through mesenchymal and hematopoietic stem cells, showed promising results in improving symptoms caused by neurodegeneration. We propose that purinergic receptor activity regulation combined with stem cells could enhance proliferative and differentiation rates as well as cell engraftment.


Assuntos
Doenças Cardiovasculares/terapia , Doenças Neurodegenerativas/terapia , Antagonistas Purinérgicos/uso terapêutico , Receptores Purinérgicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transplante de Células-Tronco , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Antagonistas Purinérgicos/farmacologia
2.
Eur Neuropsychopharmacol ; 23(12): 1769-78, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23434291

RESUMO

Activation of purinergic receptors by ATP (P2R) modulates glutamate release and the activation of post-synaptic P2R is speculated to induce nitric oxide (NO) synthesis. Increased glutamatergic and nitrergic signaling have been involved in the neurobiology of stress-related psychiatric disorders such as anxiety and depression. Therefore, the aim of this study was to test the effects of two P2R antagonists (PPADS and iso-PPADS) in animals submitted to models predictive of antidepressant-, anxiolytic- and anticompulsive-like effects. Swiss mice receiving PPADS at 12.5mg/kg showed reduced immobility time in the forced swimming test (FST) similarly to the prototype antidepressant imipramine (30mg/kg). This dose was also able to decrease the number of buried marbles in the marble-burying test (MBT), an anticompulsive-like effect. However, no effect was observed in animals submitted to the elevated plus maze (EPM) and to the open field test. The systemic administration of iso-PPADS, a preferential P2XR antagonist, also reduced the immobility time in FST, which was associated to a decrease in NOx levels in the prefrontal cortex. In addition, P2X7 receptor was found co-immunoprecipitated with neuronal nitric oxide synthase (NOS1) in the prefrontal cortex. These results suggest that P2X7, possibly coupled to NOS1, could modulate behavioral responses associated to stress-related disorders and it could be a new target for the development of more effective treatments for affective disorders.


Assuntos
Antidepressivos/uso terapêutico , Comportamento Compulsivo/tratamento farmacológico , Depressão/tratamento farmacológico , Óxido Nítrico/metabolismo , Antagonistas Purinérgicos/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Comportamento Exploratório/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Resposta de Imobilidade Tônica/efeitos dos fármacos , Resposta de Imobilidade Tônica/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Paroxetina/farmacologia , Paroxetina/uso terapêutico , Antagonistas Purinérgicos/farmacologia , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Fosfato de Piridoxal/uso terapêutico , Ratos , Receptores Purinérgicos/metabolismo , Natação/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA