Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.412
Filtrar
2.
Front Immunol ; 15: 1427810, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351227

RESUMO

It has been demonstrated previously that human leukocyte antigen class I (HLA-I) and class II (HLA-II) alleles may modulate JAK2 V617F and CALR mutation (CALRmut)-associated oncogenesis in myeloproliferative neoplasms (MPNs). However, the role of immunogenetic factors in MPNs remains underexplored. We aimed to investigate the potential involvement of HLA genes in CALRmut+ MPNs. High-resolution genotyping of HLA-I and -II loci was conducted in 42 CALRmut+ and 158 JAK2 V617F+ MPN patients and 1,083 healthy controls. A global analysis of the diversity of HLA-I genotypes revealed no significant differences between CALRmut+ patients and controls. However, one HLA-I allele (C*06:02) showed an inverse correlation with presence of CALR mutation. A meta-analysis across independent cohorts and healthy individuals from the 1000 Genomes Project confirmed an inverse correlation between the presentation capabilities of the HLA-I loci for JAK2 V617F and CALRmut-derived peptides in both patients and healthy individuals. scRNA-Seq analysis revealed low expression of TAP1 and CIITA genes in CALRmut+ hematopoietic stem and progenitor cells. In conclusion, the HLA-I genotype differentially restricts JAK2 V617F and CALRmut-driven oncogenesis potentially explaining the mutual exclusivity of the two mutations and differences in their presentation latency. These findings have practical implications for the development of neoantigen-based vaccines in MPNs.


Assuntos
Calreticulina , Genótipo , Janus Quinase 2 , Mutação , Transtornos Mieloproliferativos , Humanos , Janus Quinase 2/genética , Calreticulina/genética , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Carcinogênese/genética , Alelos , Antígenos de Histocompatibilidade Classe I/genética , Idoso de 80 Anos ou mais
3.
Front Immunol ; 15: 1371156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351230

RESUMO

Effective treatment and immunoprophylaxis of viral respiratory infections with neutralizing monoclonal antibodies (mAbs) require maintaining inhibitory concentrations of mAbs at the airway surface. While engineered mAbs with increased affinity to the neonatal Fc receptor (FcRn) are increasingly employed, little is known how increased affinity of Fc to FcRn influences basal-to-apical transepithelial transport (transcytosis) of mAbs across the airway epithelium. To investigate this, we utilized a model of well-differentiated human airway epithelium (WD-HAE) that exhibited robust FcRn expression, and measured the transepithelial transport of a mAb against SARS-CoV-2 Spike protein (CR3022) with either wildtype IgG1-Fc or Fc modified with YTE or LS mutations known to increase affinity for FcRn. Despite the marked differences in the affinity of these CR3022 variants for FcRn, we did not find substantial differences in basal-to-apical transport reflective of systemic dosing, or apical-to-basal transport reflective of inhaled dosing, compared to the transport of wildtype IgG1-Fc. These results suggest increasing FcRn affinity may only have limited influence over transcytosis rates of systemically dosed mAbs across the human airway epithelium over short time scales. Over longer time scales, the elevated circulating levels of mAbs with greater FcRn affinity, due to more effective FcRn-mediated recycling, may better resupply mAb into the respiratory tract, leading to more effective extended immunoprophylaxis.


Assuntos
Anticorpos Monoclonais , Antígenos de Histocompatibilidade Classe I , Imunoglobulina G , Receptores Fc , Mucosa Respiratória , Transcitose , Humanos , Receptores Fc/metabolismo , Receptores Fc/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Imunoglobulina G/imunologia , Anticorpos Monoclonais/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle
4.
Nat Commun ; 15(1): 8508, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353943

RESUMO

Immune surveillance by cytotoxic T cells eliminates tumor cells and cells infected by intracellular pathogens. This process relies on the presentation of antigenic peptides by Major Histocompatibility Complex class I (MHC-I) at the cell surface. The loading of these peptides onto MHC-I depends on the peptide loading complex (PLC) at the endoplasmic reticulum (ER). Here, we uncovered that MHC-I antigen presentation is regulated by ER-associated degradation (ERAD), a protein quality control process essential to clear misfolded and unassembled proteins. An unbiased proteomics screen identified the PLC component Tapasin, essential for peptide loading onto MHC-I, as a substrate of the RNF185/Membralin ERAD complex. Loss of RNF185/Membralin resulted in elevated Tapasin steady state levels and increased MHC-I at the surface of professional antigen presenting cells. We further show that RNF185/Membralin ERAD complex recognizes unassembled Tapasin and limits its incorporation into PLC. These findings establish a novel mechanism controlling antigen presentation and suggest RNF185/Membralin as a potential therapeutic target to modulate immune surveillance.


Assuntos
Apresentação de Antígeno , Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático , Antígenos de Histocompatibilidade Classe I , Proteínas de Membrana Transportadoras , Ubiquitina-Proteína Ligases , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Retículo Endoplasmático/metabolismo , Células HEK293 , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética
5.
Sci Rep ; 14(1): 20924, 2024 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251790

RESUMO

Human herpes viruses (HHV) are ubiquitous and have been implicated in numerous long-term health conditions. Since the association between viral exposure and long-term health impacts is partially influenced by variation in human leukocyte antigen (HLA) genes, we evaluated in silico the binding affinities of 9 HHV envelope glycoproteins with 127 common HLA Class I and Class II molecules. The findings show substantial variability in HHV binding affinity across viruses, HLA Class, HLA genes, and HLA alleles. Specific findings were as follows: (1) the predicted binding affinities of HHVs were characterized by four distinct groupings-[HHV1, HHV2], [HHV3, HHV4, HHV5], [HHV6A], [HHV6B, HHV7, HHV8]-with relatively lower binding affinities for HHV1, HHV2, and HHV6a compared to other HHVs; (2) significantly higher binding affinity was found for HLA Class I relative to Class II; (3) analyses within each class demonstrated that alleles of the C gene (for Class I) and DRB1 gene (for Class II) had the highest binding affinities; and (4) for each virus, predicted binding affinity to specific alleles varied, with HHV6a having the lowest affinity for HHV-HLA complexes, and HHV3, HHV4, and HHV5 having the highest. Since HLA-antigen binding is the first step in initiating an immune response to foreign antigens, these relative differences in HHV binding affinities are likely to influence long-term health impacts such that the cells infected with viruses associated with higher binding affinities across common HLA alleles may be more reduced in numbers, thereby lowering the potential for long-term sequelae of their infections.


Assuntos
Alelos , Proteínas do Envelope Viral , Humanos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Herpesviridae/imunologia , Herpesviridae/genética , Antígenos HLA/genética , Antígenos HLA/imunologia , Ligação Proteica , Imunogenética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia
6.
Vaccine ; 42(24): 126266, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39232399

RESUMO

Tuberculosis (TB) is one of the leading causes of death from infectious diseases, killing approximately 1.3 million people worldwide in 2022 alone. The current vaccine for TB contains a live attenuated bacterium, Mycobacterium bovis BCG (Bacille Calmette-Guérin). The BCG vaccine is highly effective in preventing severe forms of childhood TB but does not protect against latent infection or disease in older age groups. A new or improved BCG vaccine for prevention of pulmonary TB is urgently needed. In this study, we infected murine bone marrow derived dendritic cells from C57BL/6 mice with M. bovis BCG followed by elution and identification of BCG-derived MHC class I and class II-bound peptides using tandem mass spectrometry. We identified 1436 MHC-bound peptides of which 94 were derived from BCG. Fifty-five peptides were derived from MHC class I molecules and 39 from class II molecules. We tested the 94 peptides for their immunogenicity using IFN- γ ELISPOT assay with splenocytes purified from BCG immunized mice and 10 showed positive responses. Seven peptides were derived from MHC II and three from MHC class I. In particular, MHC class II binding peptides derived from the mycobacterial surface lipoprotein Mpt83 were highly antigenic. Further evaluations of these immunogenic BCG peptides may identify proteins useful as new TB vaccine candidates.


Assuntos
Antígenos de Bactérias , Vacina BCG , Proteínas de Bactérias , Células Dendríticas , Camundongos Endogâmicos C57BL , Mycobacterium bovis , Animais , Antígenos de Bactérias/imunologia , Mycobacterium bovis/imunologia , Camundongos , Vacina BCG/imunologia , Proteínas de Bactérias/imunologia , Células Dendríticas/imunologia , Desenvolvimento de Vacinas , Feminino , Proteômica/métodos , Linfócitos T/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Lipoproteínas/imunologia , Tuberculose/prevenção & controle , Tuberculose/imunologia , Peptídeos/imunologia , Proteínas de Membrana
7.
Nat Commun ; 15(1): 8069, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277599

RESUMO

How intracellular bacteria subvert the major histocompatibility complex (MHC) class I pathway is poorly understood. Here, we show that the obligate intracellular bacterium Orientia tsutsugamushi uses its effector protein, Ank5, to inhibit nuclear translocation of the MHC class I gene transactivator, NLRC5, and orchestrate its proteasomal degradation. Ank5 uses a tyrosine in its fourth ankyrin repeat to bind the NLRC5 N-terminus while its F-box directs host SCF complex ubiquitination of NLRC5 in the leucine-rich repeat region that dictates susceptibility to Orientia- and Ank5-mediated degradation. The ability of O. tsutsugamushi strains to degrade NLRC5 correlates with ank5 genomic carriage. Ectopically expressed Ank5 that can bind but not degrade NLRC5 protects the transactivator during Orientia infection. Thus, Ank5 is an immunoevasin that uses its bipartite architecture to rid host cells of NLRC5 and reduce surface MHC class I molecules. This study offers insight into how intracellular pathogens can impair MHC class I expression.


Assuntos
Antígenos de Histocompatibilidade Classe I , Peptídeos e Proteínas de Sinalização Intracelular , Orientia tsutsugamushi , Orientia tsutsugamushi/metabolismo , Orientia tsutsugamushi/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Citoplasma/metabolismo , Células HEK293 , Proteólise , Tifo por Ácaros/imunologia , Tifo por Ácaros/microbiologia , Tifo por Ácaros/metabolismo , Camundongos , Ubiquitinação , Interações Hospedeiro-Patógeno/imunologia
8.
Front Immunol ; 15: 1442783, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39301027

RESUMO

Advances in immunotherapy rely on targeting novel cell surface antigens, including therapeutically relevant peptide fragments presented by HLA molecules, collectively known as the actionable immunopeptidome. Although the immunopeptidome of classical HLA molecules is extensively studied, exploration of the peptide repertoire presented by non-classical HLA-E remains limited. Growing evidence suggests that HLA-E molecules present pathogen-derived and tumor-associated peptides to CD8+ T cells, positioning them as promising targets for universal immunotherapies due to their minimal polymorphism. This mini-review highlights recent developments in mass spectrometry (MS) technologies for profiling the HLA-E immunopeptidome in various diseases. We discuss the unique features of HLA-E, its expression patterns, stability, and the potential for identifying new therapeutic targets. Understanding the broad repertoire of actionable peptides presented by HLA-E can lead to innovative treatments for viral and pathogen infections and cancer, leveraging its monomorphic nature for broad therapeutic efficacy.


Assuntos
Antígenos HLA-E , Antígenos de Histocompatibilidade Classe I , Imunoterapia , Espectrometria de Massas , Humanos , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Espectrometria de Massas/métodos , Imunoterapia/métodos , Vacinas de mRNA , Neoplasias/terapia , Neoplasias/imunologia , Peptídeos/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Apresentação de Antígeno/imunologia
9.
MAbs ; 16(1): 2406788, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39324549

RESUMO

Prenatal administration of monoclonal antibodies (mAbs) is a strategy that could be exploited to prevent viral infections during pregnancy and early life. To reach protective levels in fetuses, mAbs must be transported across the placenta, a selective barrier that actively and specifically promotes the transfer of antibodies (Abs) into the fetus through the neonatal Fc receptor (FcRn). Because FcRn also regulates Ab half-life, Fc mutations like the M428L/N434S, commonly known as LS mutations, and others have been developed to enhance binding affinity to FcRn and improve drug pharmacokinetics. We hypothesized that these FcRn-enhancing mutations could similarly affect the delivery of therapeutic Abs to the fetus. To test this hypothesis, we measured the transplacental transfer of leronlimab, an anti-CCR5 mAb, in clinical development for preventing HIV infections, using pregnant rhesus macaques to model in utero mAb transfer. We also generated a stabilized and FcRn-enhanced form of leronlimab, termed leronlimab-PLS. Leronlimab-PLS maintained higher levels within the maternal compartment while also reaching higher mAb levels in the fetus and newborn circulation. Further, a single dose of leronlimab-PLS led to complete CCR5 receptor occupancy in mothers and newborns for almost a month after birth. These findings support the optimization of FcRn interactions in mAb therapies designed for administration during pregnancy.


Assuntos
Feto , Antígenos de Histocompatibilidade Classe I , Macaca mulatta , Receptores CCR5 , Receptores Fc , Animais , Gravidez , Receptores Fc/genética , Receptores Fc/imunologia , Receptores Fc/metabolismo , Feminino , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Feto/imunologia , Receptores CCR5/genética , Receptores CCR5/imunologia , Animais Recém-Nascidos , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/genética , Infecções por HIV/imunologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Troca Materno-Fetal/imunologia , Mutação , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/genética , Antagonistas dos Receptores CCR5/farmacologia , Anticorpos Monoclonais Humanizados/imunologia
10.
Cells ; 13(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39329721

RESUMO

Impaired tumor cell antigen presentation contributes significantly to immune evasion. This study identifies Berbamine hydrochloride (Ber), a compound derived from traditional Chinese medicine, as an effective inhibitor of autophagy that enhances antigen presentation in tumor cells. Ber increases MHC-I-mediated antigen presentation in melanoma cells, improving recognition and elimination by CD8+ T cells. Mutation of Atg4b, which blocks autophagy, also raises MHC-I levels on the cell surface, and further treatment with Ber under these conditions does not increase MHC-I, indicating Ber's role in blocking autophagy to enhance MHC-I expression. Additionally, Ber treatment leads to the accumulation of autophagosomes, with elevated levels of LC3-II and p62, suggesting a disrupted autophagic flux. Fluorescence staining and co-localization analyses reveal that Ber likely inhibits lysosomal acidification without hindering autophagosome-lysosome fusion. Importantly, Ber treatment suppresses melanoma growth in mice and enhances CD8+ T cell infiltration, supporting its therapeutic potential. Our findings demonstrate that Ber disturbs late-stage autophagic flux through abnormal lysosomal acidification, enhancing MHC-I-mediated antigen presentation and curtailing tumor immune escape.


Assuntos
Autofagia , Benzilisoquinolinas , Melanoma , Evasão Tumoral , Autofagia/efeitos dos fármacos , Animais , Camundongos , Linhagem Celular Tumoral , Humanos , Evasão Tumoral/efeitos dos fármacos , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Apresentação de Antígeno/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Camundongos Endogâmicos C57BL , Autofagossomos/metabolismo , Autofagossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/tratamento farmacológico , Cisteína Endopeptidases
11.
PLoS Comput Biol ; 20(9): e1011718, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39283896

RESUMO

In addition to the classical HLA genes, the major histocompatibility complex (MHC) harbors a high number of other polymorphic genes with less established roles in disease associations and transplantation matching. To facilitate studies of the non-classical and non-HLA genes in large patient and biobank cohorts, we trained imputation models for MICA, MICB, HLA-E, HLA-F and HLA-G alleles on genome SNP array data. We show, using both population-specific and multi-population 1000 Genomes references, that the alleles of these genes can be accurately imputed for screening and research purposes. The best imputation model for MICA, MICB, HLA-E, -F and -G achieved a mean accuracy of 99.3% (min, max: 98.6, 99.9). Furthermore, validation of the 1000 Genomes exome short-read sequencing-based allele calling against a clinical-grade reference data showed an average accuracy of 99.8%, testifying for the quality of the 1000 Genomes data as an imputation reference. We also fitted the models for Infinium Global Screening Array (GSA, Illumina, Inc.) and Axiom Precision Medicine Research Array (PMRA, Thermo Fisher Scientific Inc.) SNP content, with mean accuracies of 99.1% (97.2, 100) and 98.9% (97.4, 100), respectively.


Assuntos
Alelos , Antígenos de Histocompatibilidade Classe I , Polimorfismo de Nucleotídeo Único , Humanos , Polimorfismo de Nucleotídeo Único/genética , Antígenos de Histocompatibilidade Classe I/genética , Genoma Humano/genética , Antígenos HLA-E , Biologia Computacional/métodos
12.
BMC Bioinformatics ; 25(1): 310, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333860

RESUMO

BACKGROUND: Antigen presentation is a central step in initiating and shaping the adaptive immune response. To activate CD8+ T cells, pathogen-derived peptides are presented on the cell surface of antigen-presenting cells bound to major histocompatibility complex (MHC) class I molecules. CD8+ T cells that recognize these complexes with their T cell receptor are activated and ideally eliminate infected cells. Prediction of putative peptides binding to MHC class I (MHC-I) is crucial for understanding pathogen recognition in specific immune responses and for supporting drug and vaccine design. There are reliable databases for epitope prediction algorithms available however they primarily focus on the prediction of epitopes in single immunogenic proteins. RESULTS: We have developed the tool DiscovEpi to establish an interface between whole proteomes and epitope prediction. The tool allows the automated identification of all potential MHC-I-binding peptides within a proteome and calculates the epitope density and average binding score for every protein, a protein-centric approach. DiscovEpi provides a convenient interface between automated multiple sequence extraction by organism and cell compartment from the database UniProt for subsequent epitope prediction via NetMHCpan. Furthermore, it allows ranking of proteins by their predicted immunogenicity on the one hand and comparison of different proteomes on the other. By applying the tool, we predict a higher immunogenic potential of membrane-associated proteins of SARS-CoV-2 compared to those of influenza A based on the presented metrics epitope density and binding score. This could be confirmed visually by comparing the epitope maps of the influenza A strain and SARS-CoV-2. CONCLUSION: Automated prediction of whole proteomes and the subsequent visualization of the location of putative epitopes on sequence-level facilitate the search for putative immunogenic proteins or protein regions and support the study of adaptive immune responses and vaccine design.


Assuntos
Antígenos de Histocompatibilidade Classe I , Proteoma , Proteoma/metabolismo , Proteoma/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/química , Humanos , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/virologia , SARS-CoV-2/imunologia , Software , Epitopos/química , Epitopos/imunologia , Bases de Dados de Proteínas , Algoritmos
13.
Front Immunol ; 15: 1445338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247192

RESUMO

Background: Defective ribosomal products (DRiPs) are non-functional proteins rapidly degraded during or after translation being an essential source for MHC class I ligands. DRiPs are characterized to derive from a substantial subset of nascent gene products that degrade more rapidly than their corresponding native retiree pool. So far, mass spectrometry analysis revealed that a large number of HLA class I peptides derive from DRiPs. However, a specific viral DRiP on protein level was not described. In this study, we aimed to characterize and identify DRiPs derived from a viral protein. Methods: Using the nucleoprotein (NP) of the lymphocytic choriomeningitis virus (LCMV) which is conjugated N-terminally to ubiquitin, or the ubiquitin-like modifiers FAT10 or ISG15 the occurrence of DRiPs was studied. The formation and degradation of DRiPs was monitored by western blot with the help of a FLAG tag. Flow cytometry and cytotoxic T cells were used to study antigen presentation. Results: We identified several short lived DRiPs derived from LCMV-NP. Of note, these DRiPs could only be observed when the LCMV-NP was modified with ubiquitin or ubiquitin-like modifiers, but not in the wild type form. Using proteasome inhibitors, we could show that degradation of LCMV-NP derived DRiPs were proteasome dependent. Interestingly, the synthesis of DRiPs could be enhanced when cells were stressed with the help of FCS starvation. An enhanced NP118-126 presentation was observed when the LCMV-NP was modified with ubiquitin or ubiquitin-like modifiers, or under FCS starvation. Conclusion: Taken together, we visualize for the first time DRiPs derived from a viral protein. Furthermore, DRiPs formation, and therefore MHC-I presentation, is enhanced under cellular stress conditions. Our investigations on DRiPs in MHC class I antigen presentation open up new approaches for the development of vaccination strategies.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I , Vírus da Coriomeningite Linfocítica , Apresentação de Antígeno/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Vírus da Coriomeningite Linfocítica/imunologia , Animais , Humanos , Estresse Fisiológico/imunologia , Linfócitos T Citotóxicos/imunologia , Camundongos , Ubiquitinas/metabolismo , Ubiquitinas/genética , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/imunologia , Proteólise , Nucleoproteínas/imunologia , Nucleoproteínas/metabolismo
14.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273322

RESUMO

IL-15 is a homeostatic cytokine for human T and NK cells. However, whether other cytokines influence the effect of IL-15 is not known. We studied the impact that IL-10, TGF-ß, IL-17A, and IFN-γ have on the IL-15-induced proliferation of human T cells and the expression of HLA class I (HLA-I) molecules. Peripheral blood lymphocytes (PBLs) were labeled with CFSE and stimulated for 12 days with IL-15 in the absence or presence of the other cytokines. The proportion of proliferating T cells and the expression of cell surface HLA-I molecules were analyzed using flow cytometry. The IL-15-induced proliferation of T cells was paralleled by an increase in the expression of HC-10-reactive HLA-I molecules, namely on T cells that underwent ≥5-6 cycles of cell division. It is noteworthy that the IL-15-induced proliferation of T cells was potentiated by IL-10 and TGF-ß but not by IL-17 or IFN-γ and was associated with a decrease in the expression of HC-10-reactive molecules. The cytokines IL-10 and TGF-ß potentiate the proliferative capacity that IL-15 has on human T cells in vitro, an effect that is associated with a reduction in the amount of HC-10 reactive HLA class I molecules induced by IL-15.


Assuntos
Proliferação de Células , Antígenos de Histocompatibilidade Classe I , Interferon gama , Interleucina-10 , Interleucina-15 , Interleucina-17 , Linfócitos T , Fator de Crescimento Transformador beta , Humanos , Proliferação de Células/efeitos dos fármacos , Interferon gama/farmacologia , Interferon gama/metabolismo , Interleucina-17/farmacologia , Interleucina-17/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Interleucina-10/metabolismo , Interleucina-15/farmacologia , Interleucina-15/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/citologia , Células Cultivadas , Ativação Linfocitária/efeitos dos fármacos
15.
Bioinformatics ; 40(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39276157

RESUMO

MOTIVATION: Neoantigens, derived from somatic mutations in cancer cells, can elicit anti-tumor immune responses when presented to autologous T cells by human leukocyte antigen. Identifying immunogenic neoantigens is crucial for cancer immunotherapy development. However, the accuracy of current bioinformatic methods remains unsatisfactory. Surface and structural features of peptide-HLA class I (pHLA-I) complexes offer valuable insight into the immunogenicity of neoantigens. RESULTS: We present NeoaPred, a deep-learning framework for neoantigen prediction. NeoaPred accurately constructs pHLA-I complex structures, with 82.37% of the predicted structures showing an RMSD of < 1 Å. Using these structures, NeoaPred integrates differences in surface, structural, and atom group features between the mutant peptide and its wild-type counterpart to predict a foreignness score. This foreignness score is an effective factor for neoantigen prediction, achieving an AUROC (Area Under the Receiver Operating Characteristic Curve) of 0.81 and an AUPRC (Area Under the Precision-Recall Curve) of 0.54 in the test set, outperforming existing methods. AVAILABILITY AND IMPLEMENTATION: The source code is released under an Apache v2.0 license and is available at the GitHub repository (https://github.com/Dulab2020/NeoaPred).


Assuntos
Antígenos de Neoplasias , Aprendizado Profundo , Peptídeos , Humanos , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/química , Peptídeos/química , Peptídeos/imunologia , Antígenos HLA/imunologia , Antígenos HLA/química , Biologia Computacional/métodos , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/imunologia , Software , Neoplasias/imunologia
16.
J Immunother Cancer ; 12(9)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39244214

RESUMO

BACKGROUND: Immunodeficient mice engrafted with peripheral blood mononuclear cells (PBMCs) are models to study new cancer immunotherapy agents. However, this approach is associated with xenograft-versus-host disease (xGVHD), which starts early after PBMC transfer and limits the duration and interpretation of experiments. Here, we explore different approaches to overcome xGVHD and better support the development of cancer immunotherapies. METHODS: Immunodeficient NOD-scid IL2Rgnull (NSG) mice were intravenously transferred with human PBMCs and subcutaneously co-engrafted with HT29 human colon carcinoma cells. Diverse strategies to reduce xGVHD while preserving the antitumor activity of human immune cells were evaluated: (1) ex vivo immune graft modification by depleting CD4+ T cells pre-transfer using magnetic beads, (2) post-transplantation cyclophosphamide administration to eliminate proliferating xenoreactive T-cell clones and (3) using major histocompatibility complex (MHC) class I and II-deficient NSG mice: (Kb Db)null (IA)null (MHC-dKO NSG). Body weight and plasma murine alanine aminotransferase levels were measured as indicators of xGVHD and tumor size was measured every 2-3 days to monitor antitumor activity. The antitumor effects and pharmacodynamics of nivolumab plus ipilimumab and an anti-epithelial cell adhesion molecule (EpCAM)/CD3 T-cell engager (αEpCAM/CD3 bispecific antibody (BsAb)) were evaluated in the model. RESULTS: CD4+ T-cell depletion attenuates xGVHD but also abrogates the antitumor activity. Cyclophosphamide limits the antitumor response and does not substantially prevent xGVHD. In contrast, xGVHD was significantly attenuated in MHC-dKO NSG recipients, while the antitumor effect of human PBMCs was preserved. Furthermore, the administration of nivolumab plus ipilimumab caused exacerbated xGVHD in conventional NSG mice, thereby precluding the observation of their antitumor effects. Severe xGVHD did not occur in MHC-dKO NSG mice thus enabling the study of complete and durable tumor rejections. Similarly, NSG mice treated with an αEpCAM/CD3 BsAb showed complete tumor regressions, but died due to xGVHD. In contrast, MHC-dKO NSG mice on treatment with the αEpCAM/CD3 BsAb achieved complete tumor responses without severe xGVHD. A significant proportion of mice rendered tumor-free showed tumor rejection on rechallenge with HT29 cells without further treatment. Finally, tumor-infiltrating CD8+ T-cell number increase, activation and CD137 upregulation were observed on αEpCAM/CD3 BsAb treatment. CONCLUSION: Humanized MHC-dKO immunodeficient mice allow and refine the preclinical testing of immunotherapy agents for which experimentation is precluded in conventional immunodeficient mice due to severe xGVHD.


Assuntos
Inibidores de Checkpoint Imunológico , Animais , Humanos , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos SCID , Camundongos Endogâmicos NOD , Antígenos de Histocompatibilidade Classe I/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Antígenos de Histocompatibilidade Classe II/imunologia , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
17.
PLoS Comput Biol ; 20(9): e1012380, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39226310

RESUMO

Molecules of the Major Histocompatibility Complex (MHC) present short protein fragments on the cell surface, an important step in T cell immune recognition. MHC-I molecules process peptides from intracellular proteins; MHC-II molecules act in antigen-presenting cells and present peptides derived from extracellular proteins. Here we show that the sequence-dependent energy landscapes of MHC-peptide binding encode class-specific nonlinearities (epistasis). MHC-I has a smooth landscape with global epistasis; the binding energy is a simple deformation of an underlying linear trait. This form of epistasis enhances the discrimination between strong-binding peptides. In contrast, MHC-II has a rugged landscape with idiosyncratic epistasis: binding depends on detailed amino acid combinations at multiple positions of the peptide sequence. The form of epistasis affects the learning of energy landscapes from training data. For MHC-I, a low-complexity problem, we derive a simple matrix model of binding energies that outperforms current models trained by machine learning. For MHC-II, higher complexity prevents learning by simple regression methods. Epistasis also affects the energy and fitness effects of mutations in antigen-derived peptides (epitopes). In MHC-I, large-effect mutations occur predominantly in anchor positions of strong-binding epitopes. In MHC-II, large effects depend on the background epitope sequence but are broadly distributed over the epitope, generating a bigger target for escape mutations due to loss of presentation. Together, our analysis shows how an energy landscape of protein-protein binding constrains the target of escape mutations from T cell immunity, linking the complexity of the molecular interactions to the dynamics of adaptive immune response.


Assuntos
Peptídeos , Ligação Proteica , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/imunologia , Humanos , Biologia Computacional , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Epistasia Genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Termodinâmica , Complexo Principal de Histocompatibilidade/imunologia
18.
Front Immunol ; 15: 1447980, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39295866

RESUMO

The ubiquitous Torque teno virus (TTV) establishes a chronically persistent infection in the human host. TTV has not been associated with any apparent disease, but, as part of the human virome, it may confer a regulatory imprint on the human immune system with as yet unclear consequences. However, so far, only few studies have characterized the TTV-specific immune responses or the overall immunological imprints by TTV. Here, we reveal that TTV infection leads to a highly exhausted TTV-specific CD8+ T-cell response, hallmarked by decreased IFN-γ production and the expression of the inhibitory NKG2A-receptor. On a functional level, we identified a panel of highly polymorphic TTV-encoded peptides that lead to an expansion of regulatory NKG2A+ natural killer, NKG2A+CD4+, and NKG2A+CD8+ T cells via the stabilization of the non-classical HLA-E molecule. Our results thus demonstrate that TTV leads to a distinct imprint on the human immune system that may further regulate overall human immune responses in infectious, autoimmune, and malignant diseases.


Assuntos
Linfócitos T CD8-Positivos , Infecções por Vírus de DNA , Antígenos HLA-E , Antígenos de Histocompatibilidade Classe I , Subfamília C de Receptores Semelhantes a Lectina de Células NK , Torque teno virus , Humanos , Torque teno virus/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Infecções por Vírus de DNA/imunologia , Interferon gama/metabolismo , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Masculino
19.
Physiol Rep ; 12(17): e70025, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39223101

RESUMO

Major histocompatibility complex class I (MHC I) molecules present peptides to CD8+ T-cells for immunosurveillance of infection and cancer. Recent studies indicate lineage-specific heterogeneity in MHC I expression. While respiratory diseases rank among the leading causes of mortality, studies in mice have shown that lung epithelial cells (LECs) express the lowest levels of MHC I in the lung. This study aims to answer three questions: (i) Do human LECs express low levels of MHC I? (ii) Is LEC MHC I expression modulated in chronic respiratory diseases? (iii) Which factors regulate MHC I levels in human LECs? We analyzed human LECs from parenchymal explants using single-cell RNA sequencing and immunostaining. We confirmed low constitutive MHC I expression in human LECs, with significant upregulation in chronic respiratory diseases. We observed a sexual dimorphism, with males having higher MHC I levels under steady-state conditions, likely due to differential redox balance. Our study unveils the complex interplay between MHC I expression, sex, and respiratory disease. Since MHC I upregulation contributes to the development of immunopathologies in other models, we propose that it may have a similar impact on chronic lung disease.


Assuntos
Células Epiteliais , Antígenos de Histocompatibilidade Classe I , Pulmão , Humanos , Feminino , Masculino , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Pulmão/metabolismo , Pulmão/citologia , Pulmão/imunologia , Células Epiteliais/metabolismo , Caracteres Sexuais , Pneumopatias/metabolismo
20.
J Immunother Cancer ; 12(9)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39299754

RESUMO

BACKGROUND: Major histocompatibility complex class I (MHC-I) loss is frequent in non-small cell lung cancer (NSCLC) rendering tumor cells resistant to T cell lysis. NK cells kill MHC-I-deficient tumor cells, and although previous work indicated their presence at NSCLC margins, they were functionally impaired. Within, we evaluated whether NK cell and CD8 T cell infiltration and activation vary with MHC-I expression. METHODS: We used single-stain immunohistochemistry (IHC) and Kaplan-Meier analysis to test the effect of NK cell and CD8 T cell infiltration on overall and disease-free survival. To delineate immune covariates of MHC-I-disparate lung cancers, we used multiplexed immunofluorescence (mIF) imaging followed by multivariate statistical modeling. To identify differences in infiltration and intercellular communication between IFNγ-activated and non-activated lymphocytes, we developed a computational pipeline to enumerate single-cell neighborhoods from mIF images followed by multivariate discriminant analysis. RESULTS: Spatial quantitation of tumor cell MHC-I expression revealed intratumoral and intertumoral heterogeneity, which was associated with the local lymphocyte landscape. IHC analysis revealed that high CD56+ cell numbers in patient tumors were positively associated with disease-free survival (HR=0.58, p=0.064) and overall survival (OS) (HR=0.496, p=0.041). The OS association strengthened with high counts of both CD56+ and CD8+ cells (HR=0.199, p<1×10-3). mIF imaging and multivariate discriminant analysis revealed enrichment of both CD3+CD8+ T cells and CD3-CD56+ NK cells in MHC-I-bearing tumors (p<0.05). To infer associations of functional cell states and local cell-cell communication, we analyzed spatial single-cell neighborhood profiles to delineate the cellular environments of IFNγ+/- NK cells and T cells. We discovered that both IFNγ+ NK and CD8 T cells were more frequently associated with other IFNγ+ lymphocytes in comparison to IFNγ- NK cells and CD8 T cells (p<1×10-30). Moreover, IFNγ+ lymphocytes were most often found clustered near MHC-I+ tumor cells. CONCLUSIONS: Tumor-infiltrating NK cells and CD8 T cells jointly affected control of NSCLC tumor progression. Coassociation of NK and CD8 T cells was most evident in MHC-I-bearing tumors, especially in the presence of IFNγ. Frequent colocalization of IFNγ+ NK cells with other IFNγ+ lymphocytes in near-neighbor analysis suggests NSCLC lymphocyte activation is coordinately regulated.


Assuntos
Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Células não Pequenas , Antígenos de Histocompatibilidade Classe I , Células Matadoras Naturais , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Masculino , Feminino , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA