Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18875, 2024 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143185

RESUMO

Chagas disease, caused by Trypanosoma cruzi (T. cruzi), is one of the most important neglected diseases in Latin America. The limited use of the current nitro-derivative-based chemotherapy highlights the need for alternative drugs and the identification of their molecular targets. In this study, we investigated the trypanocidal effect of the sesquiterpene lactone dehydroleucodine (DhL) and its derivatives, focusing on the antioxidative defense of the parasites. DhL and two derivatives, at lesser extent, displayed antiproliferative effect on the parasites. This effect was blocked by the reducing agent glutathione (GSH). Treated parasites exhibited increased intracellular ROS concentration and trypanothione synthetase activity, accompanied by mitochondrial swelling. Although molecular dynamics studies predicted that GSH would not interact with DhL, 1H-NMR analysis confirmed that GSH could protect parasites by interacting with the lactone. When parasites overexpressing mitochondrial tryparedoxin peroxidase were incubated with DhL, its effect was attenuated. Overexpression of cytosolic tryparedoxin peroxidase also provided some protection against DhL. These findings suggest that DhL induces oxidative imbalance in T. cruzi, offering new insights into potential drug targets against this parasite.


Assuntos
Lactonas , Espécies Reativas de Oxigênio , Sesquiterpenos , Trypanosoma cruzi , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/metabolismo , Sesquiterpenos/farmacologia , Lactonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Tripanossomicidas/farmacologia , Glutationa/metabolismo , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Proteínas de Protozoários/metabolismo , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Amida Sintases
2.
J Enzyme Inhib Med Chem ; 37(1): 912-929, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35306933

RESUMO

Trypanothione synthetase (TryS) catalyses the synthesis of N1,N8-bis(glutathionyl)spermidine (trypanothione), which is the main low molecular mass thiol supporting several redox functions in trypanosomatids. TryS attracts attention as molecular target for drug development against pathogens causing severe and fatal diseases in mammals. A drug discovery campaign aimed to identify and characterise new inhibitors of TryS with promising biological activity was conducted. A large compound library (n = 51,624), most of them bearing drug-like properties, was primarily screened against TryS from Trypanosoma brucei (TbTryS). With a true-hit rate of 0.056%, several of the TbTryS hits (IC50 from 1.2 to 36 µM) also targeted the homologue enzyme from Leishmania infantum and Trypanosoma cruzi (IC50 values from 2.6 to 40 µM). Calmidazolium chloride and Ebselen stand out for their multi-species anti-TryS activity at low µM concentrations (IC50 from 2.6 to 13.8 µM). The moieties carboxy piperidine amide and amide methyl thiazole phenyl were identified as novel TbTryS inhibitor scaffolds. Several of the TryS hits presented one-digit µM EC50 against T. cruzi and L. donovani amastigotes but proved cytotoxic against the human osteosarcoma and macrophage host cells (selectivity index ≤ 3). In contrast, seven hits showed a significantly higher selectivity against T. b. brucei (selectivity index from 11 to 182). Non-invasive redox assays confirmed that Ebselen, a multi-TryS inhibitor, induces an intracellular oxidative milieu in bloodstream T. b. brucei. Kinetic and mass spectrometry analysis revealed that Ebselen is a slow-binding inhibitor that modifies irreversible a highly conserved cysteine residue from the TryS's synthetase domain. The most potent TbTryS inhibitor (a singleton containing an adamantine moiety) exerted a non-covalent, non-competitive (with any of the substrates) inhibition of the enzyme. These data feed the drug discovery pipeline for trypanosomatids with novel and valuable information on chemical entities with drug potential.


Assuntos
Amida Sintases/antagonistas & inibidores , Antineoplásicos/farmacologia , Antiprotozoários/farmacologia , Leishmania infantum/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Amida Sintases/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Antiprotozoários/síntese química , Antiprotozoários/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leishmania infantum/enzimologia , Macrófagos/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Trypanosoma cruzi/enzimologia
3.
Mol Divers ; 25(3): 1361-1373, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34264440

RESUMO

Trypanosomatid-caused diseases are among the neglected infectious diseases with the highest disease burden, affecting about 27 million people worldwide and, in particular, socio-economically vulnerable populations. Trypanothione synthetase (TryS) is considered one of the most attractive drug targets within the thiol-polyamine metabolism of typanosomatids, being unique, essential and druggable. Here, we have compiled a dataset of 401 T. brucei TryS inhibitors that includes compounds with inhibitory data reported in the literature, but also in-house acquired data. QSAR classifiers were derived and validated from such dataset, using publicly available and open-source software, thus assuring the portability of the obtained models. The performance and robustness of the resulting models were substantially improved through ensemble learning. The performance of the individual models and the model ensembles was further assessed through retrospective virtual screening campaigns. At last, as an application example, the chosen model-ensemble has been applied in a prospective virtual screening campaign on DrugBank 5.1.6 compound library. All the in-house scripts used in this study are available on request, whereas the dataset has been included as supplementary material.


Assuntos
Amida Sintases/química , Descoberta de Drogas/métodos , Inibidores Enzimáticos/química , Aprendizado de Máquina , Algoritmos , Amida Sintases/antagonistas & inibidores , Amida Sintases/metabolismo , Antiprotozoários/química , Antiprotozoários/farmacologia , Bases de Dados de Produtos Farmacêuticos , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/normas , Inibidores Enzimáticos/farmacologia , Humanos , Redes e Vias Metabólicas , Modelos Teóricos , Curva ROC , Relação Estrutura-Atividade
4.
Redox Biol ; 26: 101231, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31203195

RESUMO

Trypanothione (T(SH)2) is the main antioxidant metabolite for peroxide reduction in Trypanosoma cruzi; therefore, its metabolism has attracted attention for therapeutic intervention against Chagas disease. To validate drug targets within the T(SH)2 metabolism, the strategies and methods of Metabolic Control Analysis and kinetic modeling of the metabolic pathway were used here, to identify the steps that mainly control the pathway fluxes and which could be appropriate sites for therapeutic intervention. For that purpose, gamma-glutamylcysteine synthetase (γECS), trypanothione synthetase (TryS), trypanothione reductase (TryR) and the tryparedoxin cytosolic isoform 1 (TXN1) were separately overexpressed to different levels in T. cruzi epimastigotes and their degrees of control on the pathway flux as well as their effect on drug resistance and infectivity determined. Both experimental in vivo as well as in silico analyses indicated that γECS and TryS control T(SH)2 synthesis by 60-74% and 15-31%, respectively. γECS overexpression prompted up to a 3.5-fold increase in T(SH)2 concentration, whereas TryS overexpression did not render an increase in T(SH)2 levels as a consequence of high T(SH)2 degradation. The peroxide reduction flux was controlled for 64-73% by TXN1, 17-20% by TXNPx and 11-16% by TryR. TXN1 and TryR overexpression increased H2O2 resistance, whereas TXN1 overexpression increased resistance to the benznidazole plus buthionine sulfoximine combination. γECS overexpression led to an increase in infectivity capacity whereas that of TXN increased trypomastigote bursting. The present data suggested that inhibition of high controlling enzymes such as γECS and TXN1 in the T(SH)2 antioxidant pathway may compromise the parasite's viability and infectivity.


Assuntos
Antioxidantes/metabolismo , Glutamato-Cisteína Ligase/genética , Glutationa/análogos & derivados , Proteínas de Protozoários/genética , Espermidina/análogos & derivados , Tiorredoxinas/genética , Trypanosoma cruzi/efeitos dos fármacos , Amida Sintases/genética , Amida Sintases/metabolismo , Butionina Sulfoximina/farmacologia , Linhagem Celular , Combinação de Medicamentos , Resistência a Medicamentos/genética , Fibroblastos/parasitologia , Regulação da Expressão Gênica , Glutamato-Cisteína Ligase/metabolismo , Glutationa/antagonistas & inibidores , Glutationa/biossíntese , Humanos , Peróxido de Hidrogênio/farmacologia , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Nitroimidazóis/farmacologia , Oxirredução , Estresse Oxidativo , Peroxidases/genética , Peroxidases/metabolismo , Proteínas de Protozoários/metabolismo , Transdução de Sinais , Espermidina/antagonistas & inibidores , Espermidina/biossíntese , Tiorredoxinas/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/genética
5.
Free Radic Biol Med ; 130: 23-34, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30359758

RESUMO

BACKGROUND: Chagas cardiomyopathy, caused by Trypanosoma cruzi infection, continues to be a neglected illness, and has a major impact on global health. The parasite undergoes several stages of morphological and biochemical changes during its life cycle, and utilizes an elaborated antioxidant network to overcome the oxidants barrier and establish infection in vector and mammalian hosts. Trypanothione synthetase (TryS) catalyzes the biosynthesis of glutathione-spermidine adduct trypanothione (T(SH)2) that is the principal intracellular thiol-redox metabolite in trypanosomatids. METHODS AND RESULTS: We utilized genetic overexpression (TryShi) and pharmacological inhibition approaches to examine the role of TryS in T. cruzi proliferation, tolerance to oxidative stress and resistance to anti-protozoal drugs. Our data showed the expression and activity of TryS was increased in all morphological stages of TryShi (vs. control) parasites. In comparison to controls, the TryShi epimastigotes (insect stage) recorded shorter doubling time, and both epimastigotes and infective trypomastigotes of TryShi exhibited 36-71% higher resistance to H2O2 (50-1000 µM) and heavy metal (1-500 µM) toxicity. Treatment with TryS inhibitors (5-30 µM) abolished the proliferation and survival advantages against H2O2 pressure in a dose-dependent manner in both TryShi and control parasites. Further, epimastigote and trypomastigote forms of TryShi (vs. control) T. cruzi tolerated higher doses of benznidazole and nifurtimox, the drugs currently administered for acute Chagas disease treatment. CONCLUSIONS: TryS is essential for proliferation and survival of T. cruzi under normal and oxidant stress conditions, and provides an advantage to the parasite to develop resistance against currently used anti-trypanosomal drugs. TryS indispensability has been chemically validated with inhibitors that may be useful for drug combination therapy against Chagas disease.


Assuntos
Amida Sintases/metabolismo , Antioxidantes/metabolismo , Cardiomiopatia Chagásica/parasitologia , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/fisiologia , Amida Sintases/genética , Animais , Antiprotozoários/uso terapêutico , Proliferação de Células , Células Cultivadas , Cardiomiopatia Chagásica/tratamento farmacológico , Resistência a Medicamentos , Humanos , Oxirredução , Estresse Oxidativo , Proteínas de Protozoários/genética , Transgenes/genética
6.
PLoS Negl Trop Dis ; 10(4): e0004617, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27070550

RESUMO

BACKGROUND: The search for novel chemical entities targeting essential and parasite-specific pathways is considered a priority for neglected diseases such as trypanosomiasis and leishmaniasis. The thiol-dependent redox metabolism of trypanosomatids relies on bis-glutathionylspermidine [trypanothione, T(SH)2], a low molecular mass cosubstrate absent in the host. In pathogenic trypanosomatids, a single enzyme, trypanothione synthetase (TryS), catalyzes trypanothione biosynthesis, which is indispensable for parasite survival. Thus, TryS qualifies as an attractive drug target candidate. METHODOLOGY/PRINCIPAL FINDING: A library composed of 144 compounds from 7 different families and several singletons was screened against TryS from three major pathogen species (Trypanosoma brucei, Trypanosoma cruzi and Leishmania infantum). The screening conditions were adjusted to the TryS´ kinetic parameters and intracellular concentration of substrates corresponding to each trypanosomatid species, and/or to avoid assay interference. The screening assay yielded suitable Z' and signal to noise values (≥0.85 and ~3.5, respectively), and high intra-assay reproducibility. Several novel chemical scaffolds were identified as low µM and selective tri-tryp TryS inhibitors. Compounds displaying multi-TryS inhibition (N,N'-bis(3,4-substituted-benzyl) diamine derivatives) and an N5-substituted paullone (MOL2008) halted the proliferation of infective Trypanosoma brucei (EC50 in the nM range) and Leishmania infantum promastigotes (EC50 = 12 µM), respectively. A bis-benzyl diamine derivative and MOL2008 depleted intracellular trypanothione in treated parasites, which confirmed the on-target activity of these compounds. CONCLUSIONS/SIGNIFICANCE: Novel molecular scaffolds with on-target mode of action were identified as hit candidates for TryS inhibition. Due to the remarkable species-specificity exhibited by tri-tryp TryS towards the compounds, future optimization and screening campaigns should aim at designing and detecting, respectively, more potent and broad-range TryS inhibitors.


Assuntos
Amida Sintases/antagonistas & inibidores , Antiprotozoários/isolamento & purificação , Inibidores Enzimáticos/isolamento & purificação , Leishmania infantum/efeitos dos fármacos , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Antiprotozoários/metabolismo , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/metabolismo , Leishmania infantum/enzimologia , Trypanosoma brucei brucei/enzimologia , Trypanosoma cruzi/enzimologia
7.
J Comput Aided Mol Des ; 30(4): 305-21, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26891837

RESUMO

Chagas disease is a parasitic infection caused by the protozoa Trypanosoma cruzi that affects about 6 million people in Latin America. Despite its sanitary importance, there are currently only two drugs available for treatment: benznidazole and nifurtimox, both exhibiting serious adverse effects and limited efficacy in the chronic stage of the disease. Polyamines are ubiquitous to all living organisms where they participate in multiple basic functions such as biosynthesis of nucleic acids and proteins, proliferation and cell differentiation. T. cruzi is auxotroph for polyamines, which are taken up from the extracellular medium by efficient transporters and, to a large extent, incorporated into trypanothione (bis-glutathionylspermidine), the major redox cosubstrate of trypanosomatids. From a 268-compound database containing polyamine analogs with and without inhibitory effect on T. cruzi we have inferred classificatory models that were later applied in a virtual screening campaign to identify anti-trypanosomal compounds among drugs already used for other therapeutic indications (i.e. computer-guided drug repositioning) compiled in the DrugBank and Sweetlead databases. Five of the candidates identified with this strategy were evaluated in cellular models from different pathogenic trypanosomatids (T. cruzi wt, T. cruzi PAT12, T. brucei and Leishmania infantum), and in vitro models of aminoacid/polyamine transport assays and trypanothione synthetase inhibition assay. Triclabendazole, sertaconazole and paroxetine displayed inhibitory effects on the proliferation of T. cruzi (epimastigotes) and the uptake of putrescine by the parasite. They also interfered with the uptake of others aminoacids and the proliferation of infective T. brucei and L. infantum (promastigotes). Trypanothione synthetase was ruled out as molecular target for the anti-parasitic activity of these compounds.


Assuntos
Amida Sintases/antagonistas & inibidores , Doença de Chagas/tratamento farmacológico , Reposicionamento de Medicamentos , Poliaminas/química , Amida Sintases/química , Antiprotozoários/química , Doença de Chagas/parasitologia , Simulação por Computador , Glutationa/análogos & derivados , Glutationa/química , Glutationa/uso terapêutico , Humanos , Imidazóis/química , Imidazóis/uso terapêutico , Nitroimidazóis/química , Nitroimidazóis/uso terapêutico , Poliaminas/uso terapêutico , Espermidina/análogos & derivados , Espermidina/química , Espermidina/uso terapêutico , Tiofenos/química , Tiofenos/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/patogenicidade , Interface Usuário-Computador
8.
Arch Microbiol ; 198(4): 307-13, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26802007

RESUMO

Nicotinamide adenine dinucleotide synthetase enzyme (NadE) catalyzes the amination of nicotinic acid adenine dinucleotide (NaAD) to form NAD(+). This reaction represents the last step in the majority of the NAD(+) biosynthetic routes described to date. NadE enzymes typically use either glutamine or ammonium as amine nitrogen donor, and the reaction is energetically driven by ATP hydrolysis. Given the key role of NAD(+) in bacterial metabolism, NadE has attracted considerable interest as a potential target for the development of novel antibiotics. The plant-associative nitrogen-fixing bacteria Herbaspirillum seropedicae encodes two putative NadE, namely nadE1 and nadE2. The nadE1 gene is linked to glnB encoding the signal transduction protein GlnB. Here we report the purification and in vitro characterization of H. seropedicae NadE1. Gel filtration chromatography analysis suggests that NadE1 is an octamer. The NadE1 activity was assayed in vitro, and the Michaelis-Menten constants for substrates NaAD, ATP, glutamine and ammonium were determined. Enzyme kinetic and in vitro substrate competition assays indicate that H. seropedicae NadE1 uses glutamine as a preferential nitrogen donor.


Assuntos
Amida Sintases/isolamento & purificação , Amida Sintases/metabolismo , Herbaspirillum/enzimologia , Cromatografia em Gel , Glutamina/metabolismo , Cinética , NAD/análogos & derivados , NAD/biossíntese , NAD/metabolismo , Nitrogênio/metabolismo
9.
Molecules ; 19(5): 5550-69, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24786692

RESUMO

A great number of sesquiterpenes are reported in the available literature as good antileishmanial leads. However, their mode of action at the molecular level has not been elucidated. The lack of molecular studies could be considered an impediment for studies seeking to improve sesquiterpene-based drug design. The present in silico study allows us to make important observations about the molecular details of the binding modes of a set of antileishmanial sesquiterpenes against four drug-enzyme targets [pteridine reductase-1 (PTR1), N-myristoyl transferase (NMT), cysteine synthase (CS), trypanothione synthetase (TryS)]. Through molecular docking it was found that two sesquiterpene coumarins are promising leads for the PTR1 and TryS inhibition purposes, and some xanthanolides also exhibited better affinity towards PTR1 and CS binding. In addition, the affinity values were clustered by Principal Component Analysis and drug-like properties were analyzed for the strongest-docking sesquiterpenes. The results are an excellent starting point for future studies of structural optimization of this kind of compounds.


Assuntos
Desenho de Fármacos , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Sesquiterpenos/administração & dosagem , Amida Sintases/antagonistas & inibidores , Simulação por Computador , Humanos , Leishmania/enzimologia , Oxirredutases/antagonistas & inibidores , Sesquiterpenos/química
10.
FEBS J ; 279(10): 1811-33, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22394478

RESUMO

A kinetic model of trypanothione [T(SH)(2)] metabolism in Trypanosoma cruzi was constructed based on enzyme kinetic parameters determined under near-physiological conditions (including glutathione synthetase), and the enzyme activities, metabolite concentrations and fluxes determined in the parasite under control and oxidizing conditions. The pathway structure is characterized by a T(SH)(2) synthetic module of low flux and low catalytic capacity, and another more catalytically efficient T(SH)(2) -dependent antioxidant/regenerating module. The model allowed quantification of the contribution of each enzyme to the control of T(SH)(2) synthesis and concentration (flux control and concentration control coefficients, respectively). The main control of flux was exerted by γ-glutamylcysteine synthetase (γECS) and trypanothione synthetase (TryS) (control coefficients of 0.58-0.7 and 0.49-0.58, respectively), followed by spermidine transport (0.24); negligible flux controls by trypantothione reductase (TryR) and the T(SH)(2)-dependent antioxidant machinery were determined. The concentration of reduced T(SH)(2) was controlled by TryR (0.98) and oxidative stress (-0.99); however, γECS and TryS also exerted control on the cellular level of T(SH(2)) when they were inhibited by more than 70%. The model predicted that in order to diminish the T(SH)(2) synthesis flux by 50%, it is necessary to inhibit γECS or TryS by 58 or 63%, respectively, or both by 50%, whereas more than 98% inhibition was required for TryR. Hence, simultaneous and moderate inhibition of γECS and TryS appears to be a promising multi-target therapeutic strategy. In contrast, use of highly potent and specific inhibitors for TryR and the antioxidant machinery is necessary to affect the antioxidant capabilities of the parasites.


Assuntos
Amida Sintases/fisiologia , Glutamato-Cisteína Ligase/fisiologia , Glutationa/análogos & derivados , NADH NADPH Oxirredutases/fisiologia , Espermidina/análogos & derivados , Trypanosoma cruzi/enzimologia , Amida Sintases/antagonistas & inibidores , Antioxidantes/metabolismo , Glutamato-Cisteína Ligase/antagonistas & inibidores , Glutationa/metabolismo , Cinética , Modelos Biológicos , Dados de Sequência Molecular , NADH NADPH Oxirredutases/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Transdução de Sinais , Espermidina/metabolismo , Tripanossomicidas/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/metabolismo
11.
J Med Chem ; 49(1): 426-35, 2006 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-16392828

RESUMO

As a part of our project aimed at the search for new safe chemotherapeutic and chemoprophylactic agents against American trypanosomiasis (Chagas's disease), a series of phosphinopeptides structurally related to glutathione was designed, synthesized, and evaluated as antiproliferative agents against the parasite responsible for this disease, the hemoflagellated protozoan Trypanosoma cruzi. The rationale for the synthesis of these compounds was supported on the basis that the presence of the phosphinic acid moiety would mimic the tetrahedral transition state of trypanothione synthase (TryS), a typical C:N ligase, and the molecular target of these drugs. Of the designed compounds, 53 and 54 were potent growth inhibitors against the clinically more relevant form of T. cruzi (amastigotes) growing in myoblasts. The efficacy for these drugs was comparable to that exhibited by the well-known antiparasitic agent WC-9. The simple phosphinopeptide structure found as a pharmacophore in the present study constitutes a starting point for the development of straightforward optimized drugs.


Assuntos
Antiprotozoários , Glutationa/análogos & derivados , Peptídeos , Ácidos Fosfínicos , Espermidina/análogos & derivados , Trypanosoma cruzi/efeitos dos fármacos , Amida Sintases/antagonistas & inibidores , Animais , Antiprotozoários/síntese química , Antiprotozoários/química , Antiprotozoários/farmacologia , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Glutationa/biossíntese , Glutationa/efeitos dos fármacos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacologia , Éteres Fenílicos/farmacologia , Ácidos Fosfínicos/síntese química , Ácidos Fosfínicos/química , Ácidos Fosfínicos/farmacologia , Espermidina/biossíntese , Relação Estrutura-Atividade , Tiocianatos/farmacologia , Trypanosoma cruzi/química , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA