Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microb Ecol ; 64(1): 200-13, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22297401

RESUMO

The mechanisms that ultimately regulate the diversity of microbial eukaryotic communities in bryophyte ecosystems remain a contentious topic in microbial ecology. Although there is robust consensus that abiotic factors, such as water chemistry of the bryophyte and pH, explain a significant proportion of protist and microcrustacean diversity, there is no systematic assessment of the role of bryophyte habitat complexity on such prominent microbial groups. Water-holding capacity is correlated with bryophyte morphology and canopy structure. Similarly, canopy structure explains biodiversity dynamics of the macrobiota suggesting that canopy structure may also be a potential parameter for understanding microbial diversity. Canopy roughness of the dominant bryophyte species within the Bahoruco Cloud Forest, Cachote, Dominican Republic, concomitant with their associated diversity of testate amoebae and microcrustaceans was estimated to determine whether canopy structure could be added to the list of factors explaining microbial biodiversity in bryophytes. We hypothesized that smooth (with high moisture content) canopies will have higher species richness, density, and biomass of testate amoebae and higher richness and density of microcrustaceans than rough (desiccation-prone) canopies. For testate amoebae, we found 83 morphospecies with relative low abundances. Species richness and density differed among bryophytes with different bryophyte canopy structures and based on non-metric multidimensional scaling, canopy roughness explained 25% of the variation in species composition although not as predicted. Acroporium pungens (low roughness, LR) had the lowest species richness (2 ± 0.61 SD per gram dry weight bryophyte), and density (2.1 ± 0.61 SD individual per gram of dry weight bryophyte); whereas Thuidium urceolatum (high roughness) had the highest richness (24 ± 10.82 SD) and density (94 ± 64.30 SD). The fact that the bryophyte with the highest roughness had the highest levels of diversity for testate amoebae suggests that moisture levels at the level of the bryophyte canopy may not represent a biodiversity driver in a cloud forest with high relative humidity; however, high roughness could generate a dynamic and fluctuating moisture environment with concomitant alternating microbial communities. A total of 26 microcrustacean morphospecies were found across 11 bryophytes; however, no bryophyte canopy effect was detected on their richness and density. Microcrustacean mean density was low ranging from less than one individual per 50 cm2 of bryophyte in Leucobryum (LR) to a maximum of 6 ± 3.37 SD individuals/50 cm2 in Monoclea (LR). This lack of pattern suggests that possible explanatory variables may be related to larger scale processes than those examined in this study.


Assuntos
Amébidos/crescimento & desenvolvimento , Biodiversidade , Briófitas/crescimento & desenvolvimento , Crustáceos/crescimento & desenvolvimento , Amébidos/classificação , Amébidos/isolamento & purificação , Animais , Biomassa , Crustáceos/classificação , República Dominicana , Ecossistema , Folhas de Planta/crescimento & desenvolvimento
2.
Extremophiles ; 7(4): 267-74, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12910386

RESUMO

Here we describe a new, extremely thermophilic amoeba growing between 33 degrees C and 57 degrees C ( Topt.=50 degrees C). Isolates had been obtained from hot springs at Agnano Terme (Italy), Yellowstone National Park (USA), Kamchatka (Russia), and the Arenal Volcano (Costa Rica). They could be cultured monoxenically on a thermophilic alpha-proteobacterium. The morphology of the amoeba was studied using a microscope situated under a heatable polyacrylate hood. At 50 degrees C, the cells appeared flat with an irregular triangular or elongate shape, sometimes exhibiting fine spine-like subpseudopodia. On average, they were 22 microm long and 11 microm wide and had one nucleus with a central nucleolus. Based on morphology and on SSU rRNA comparisons, the amoeba belonged to the genus Echinamoeba, where it represents a new species. Referring to its extremely thermophilic lifestyle and its hydrothermal habitat, we name it E. thermarum.


Assuntos
Amébidos/classificação , Amébidos/crescimento & desenvolvimento , Temperatura Alta , Filogenia , Água/parasitologia , Amébidos/citologia , Amébidos/isolamento & purificação , Animais , Costa Rica , Concentração de Íons de Hidrogênio , Itália , Microscopia Eletrônica de Varredura , RNA de Protozoário/genética , RNA Ribossômico/genética , Federação Russa , Cloreto de Sódio/metabolismo , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA