Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 14825, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287907

RESUMO

Seagrasses live in highly variable light environments and adjust to these variations by expressing acclimatory responses at different plant organizational levels (meadow, shoot, leaf and chloroplast level). Yet, comparative studies, to identify species' strategies, and integration of the relative importance of photoacclimatory adjustments at different levels are still missing. The variation in photoacclimatory responses at the chloroplast and leaf level were studied along individual leaves of Cymodocea nodosa, Zostera marina and Z. noltei, including measurements of variable chlorophyll fluorescence, photosynthesis, photoprotective capacities, non-photochemical quenching and D1-protein repair, and assessments of variation in leaf anatomy and chloroplast distribution. Our results show that the slower-growing C. nodosa expressed rather limited physiological and biochemical adjustments in response to light availability, while both species of faster-growing Zostera showed high variability along the leaves. In contrast, the inverse pattern was found for leaf anatomical adjustments in response to light availability, which were more pronounced in C. nodosa. This integrative plant organizational level approach shows that seagrasses differ in their photoacclimatory strategies and that these are linked to the species' life history strategies, information that will be critical for predicting the responses of seagrasses to disturbances and to accordingly develop adequate management strategies.


Assuntos
Adaptação Biológica , Alismatales/fisiologia , Luz , Alismatales/anatomia & histologia , Alismatales/crescimento & desenvolvimento , Alismatales/metabolismo , Oceano Atlântico , Clorofila/metabolismo , Cloroplastos/metabolismo , Metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia
2.
Protoplasma ; 254(4): 1529-1537, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27838782

RESUMO

Halodule wrightii is an ecologically important seagrass; however, little is known about the adaptation of this species in the context of environmental change, particularly changes arising from alterations in salinity of coastal ecosystems. This study aimed to determine the effects of different salinities on growth, morphology, leaf ultrastructure, and cell viability of H. wrightii. To accomplish this, plants were cultivated for 21 days in salinities of 25, 35, and 45. More hydropotens were observed in samples exposed to salinity of 45 with increased invagination of the plasma membrane and cell wall. These invaginations were also observed in other epidermal cells of the leaf blade. In particular, a significant retraction of plasma membrane was seen in samples exposed to salinity of 45, with possible deposition of compounds between the membrane and cell wall. Osmotic stress in samples exposed to salinity of 45 affected the chloroplasts through an increase in plastoglobules and thylakoids by granum in the epidermal chloroplasts of the leaf and decrease in the number of chloroplasts. Overall, this study showed that H. wrightii can survive within salinities that range between 25 and 45 without changing growth rate. However, the plant did have higher cell viability at salinity of 35. Salt stress in mesocosms, at both salinity of 25 and 45, decreased cell viability in this species. H . wrightii had greater changes in salinity of 45; this showed that the species is more tolerant of salinities below this value.


Assuntos
Alismatales/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Alismatales/ultraestrutura , Sobrevivência Celular , Folhas de Planta/ultraestrutura , Salinidade , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/ultraestrutura , Água do Mar
3.
PLoS One ; 10(6): e0130015, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26066515

RESUMO

Recent findings have shown that photosynthesis in the skin of the seed of Posidonia oceanica enhances seedling growth. The seagrass genus Posidonia is found only in two distant parts of the world, the Mediterranean Sea and southern Australia. This fact led us to question whether the acquisition of this novel mechanism in the evolution of this seagrass was a pre-adaptation prior to geological isolation of the Mediterranean from Tethys Sea in the Eocene. Photosynthetic activity in seeds of Australian species of Posidonia is still unknown. This study shows oxygen production and respiration rates, and maximum PSII photochemical efficiency (Fv : Fm) in seeds of two Australian Posidonia species (P. australis and P. sinuosa), and compares these with previous results for P. oceanica. Results showed relatively high oxygen production and respiratory rates in all three species but with significant differences among them, suggesting the existence of an adaptive mechanism to compensate for the relatively high oxygen demands of the seeds. In all cases maximal photochemical efficiency of photosystem II rates reached similar values. The existence of photosynthetic activity in the seeds of all three species implicates that it was an ability probably acquired from a common ancestor during the Late Eocene, when this adaptive strategy could have helped Posidonia species to survive in nutrient-poor temperate seas. This study sheds new light on some aspects of the evolution of marine plants and represents an important contribution to global knowledge of the paleogeographic patterns of seagrass distribution.


Assuntos
Alismatales , Evolução Molecular , Complexo de Proteína do Fotossistema II , Plântula/metabolismo , Alismatales/genética , Alismatales/crescimento & desenvolvimento , Austrália , Mar Mediterrâneo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo
4.
PLoS One ; 9(9): e107751, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25229897

RESUMO

The objective of this study was to measure the communities associated with different seagrass species to predict how shifts in seagrass species composition may affect associated fauna. In the northwestern Gulf of Mexico, coverage of the historically dominant shoal grass (Halodule wrightii) is decreasing, while coverage of manatee grass (Syringodium filiforme) and turtle grass (Thalassia testudinum) is increasing. We conducted a survey of fishes, crabs, and shrimp in monospecific beds of shoal, manatee, and turtle grass habitats of South Texas, USA to assess how changes in sea grass species composition would affect associated fauna. We measured seagrass parameters including shoot density, above ground biomass, epiphyte type, and epiphyte abundance to investigate relationships between faunal abundance and these seagrass parameters. We observed significant differences in communities among three seagrass species, even though these organisms are highly motile and could easily travel among the different seagrasses. Results showed species specific relationships among several different characteristics of the seagrass community and individual species abundance. More work is needed to discern the drivers of the complex relationships between individual seagrass species and their associated fauna.


Assuntos
Alismatales/classificação , Ecossistema , Estuários , Alismatales/crescimento & desenvolvimento , Golfo do México , Brotos de Planta/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA