Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioelectrochemistry ; 128: 30-38, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30909069

RESUMO

Inorganic wastewaters and sediments from the mining industry and mineral bioleaching processes have not been fully explored in bioelectrochemical systems (BES). Knowledge of interfacial changes due to biofilm evolution under acidic conditions may improve applications in electrochemical processes, specifically those related to sulfur compounds. Biofilm evolution of Acidithiobacillus thiooxidans on a graphite plate was monitored by electrochemical techniques, using the graphite plate as biofilm support and elemental sulfur as the only energy source. Even though the elemental sulfur was in suspension, S0 particles adhered to the graphite surface favoring biofilm development. The biofilms grown at different incubation times (without electric perturbation) were characterized in a classical three electrode electrochemical cell (sulfur and bacteria free culture medium) by non-invasive electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. The biofilm structure was confirmed by Environmental Scanning Electrode Microscopy, while the relative fractions of exopolysaccharides and extracellular hydrophobic compounds at different incubation times were evaluated by Confocal Laser Scanning Microscopy. The experimental conditions chosen in this work allowed the EIS monitoring of the biofilm growth as well as the modification of Extracellular Polymeric Substances (EPS) composition (hydrophobic/ exopolysaccharides EPS ratio). This strategy could be useful to control biofilms for BES operation under acidic conditions.


Assuntos
Acidithiobacillus thiooxidans/metabolismo , Biofilmes/crescimento & desenvolvimento , Técnicas Eletroquímicas/métodos , Grafite/química , Enxofre/química , Acidithiobacillus thiooxidans/crescimento & desenvolvimento , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Varredura , Análise Espectral Raman/métodos , Propriedades de Superfície
2.
Biotechnol Lett ; 40(1): 63-73, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28940098

RESUMO

OBJECTIVES: To develop a bioelectrochemical system (BES) to couple the biooxidation of chalcopyrite (CuFeS2), bioelectrogenesis, and the cathodic Cu2+ reduction, bioanodes of acidophilic (pH < 2) and aerobic chemolithoautotrophic bacteria Acidithiobacillus thiooxidans (sulfur oxidizing) and Leptospirillum sp. (Fe2+ oxidizing) were used. RESULTS: CuFeS2 biooxidation increases the charge transfer from the media due to the bioleaching of Cu and Fe. The biofilm on a graphite bar endows a more electropositive (anodic) character to the bioelectrode. By adding the bioleachate generated by both bacteria into the anodic chamber, the acidic bioleachate provides the faradaic intensity. The maximum current density was 0.86 ± 19 mA cm-2 due to the low potential of the BES of 0.18 ± 0.02 V. Such low potential was sufficient for the cathodic deposit of Cu2+. CONCLUSIONS: This work demonstrates a proof of concept for energy savings for mining industries: bioanodes of A. thiooxidans and Leptospirillum sp. are electroactive during the biooxidation of CuFeS2.


Assuntos
Acidithiobacillus thiooxidans/metabolismo , Fontes de Energia Bioelétrica , Cobre/metabolismo , Acidithiobacillus thiooxidans/crescimento & desenvolvimento , Eletrodos/microbiologia , Oxirredução
3.
World J Microbiol Biotechnol ; 34(1): 17, 2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29288469

RESUMO

Phosphorus is an essential nutrient for the synthesis of biomolecules and is particularly important in agriculture, as soils must be constantly supplemented with its inorganic form to ensure high yields and productivity. In this paper, we propose a process to solubilize phosphorus from phosphate rocks, where Acidithiobacillus thiooxidans cultures are pre-cultivated to foster the acidic conditions for bioleaching-two-step "growing-then-recovery"-. Our method solubilizes 100% of phosphorus, whereas the traditional process without pre-cultivation-single-step "growing-and-recovery"-results in a maximum of 56% solubilization. As a proof of principle, we demonstrate that even at low concentrations of the phosphate rock, 1% w/v, the bacterial culture is unviable and biological activity is not observed during the single-step process. On the other hand, in our method, the bacteria are grown without the rock, ensuring high acid production. Once pH levels are below 0.7, the mineral is added to the culture, resulting in high yields of biological solubilization. According to the Fourier Transform Infrared Spectroscopy spectrums, gypsum is the dominant phosphate phase after both the single- and two-step methods. However, calcite and fluorapatite, dominant in the un-treated rock, are still present after the single-step, highlighting the differences between the chemical and the biological methods. Our process opens new avenues for biotechnologies to recover phosphorus in tropical soils and in low-grade phosphate rock reservoirs.


Assuntos
Acidithiobacillus thiooxidans/crescimento & desenvolvimento , Acidithiobacillus thiooxidans/metabolismo , Fosfatos/química , Fósforo/química , Biodegradação Ambiental , Colômbia , Concentração de Íons de Hidrogênio , Minerais , Solo/química , Microbiologia do Solo , Solubilidade
4.
Environ Sci Pollut Res Int ; 24(24): 20082-20092, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28702905

RESUMO

Biofilm formation and evolution are key factors to consider to better understand the kinetics of arsenopyrite biooxidation. Chemical and surface analyses were carried out using Raman spectroscopy, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), glow discharge spectroscopy (GDS), and protein analysis (i.e., quantification) in order to evaluate the formation of intermediate secondary compounds and any significant changes arising in the biofilm structure of Acidithiobacillus thiooxidans during a 120-h period of biooxidation. Results show that the biofilm first evolves from a low cell density structure (1 to 12 h) into a formation of microcolonies (24 to 120 h) and then finally becomes enclosed by a secondary compound matrix that includes pyrite (FeS2)-like, S n2-/S0, and As2S3 compounds, as shown by Raman and SEM-EDS. GDS analyses (concentration-depth profiles, i.e., 12 h) indicate significant differences for depth speciation between abiotic control and biooxidized surfaces, thus providing a quantitative assessment of surface-bulk changes across samples (i.e. reactivity and /or structure-activity relationship). Respectively, quantitative protein analyses and CLSM analyses suggest variations in the type of extracellular protein expressed and changes in the biofilm structure from hydrophilic (i.e., exopolysaccharides) to hydrophobic (i.e., lipids) due to arsenopyrite and cell interactions during the 120-h period of biooxidation. We suggest feasible environmental and industrial implications for arsenopyrite biooxidation based on the findings of this study.


Assuntos
Acidithiobacillus thiooxidans/efeitos dos fármacos , Arsenicais/metabolismo , Biofilmes/efeitos dos fármacos , Compostos de Ferro/metabolismo , Minerais/metabolismo , Sulfetos/metabolismo , Poluentes Químicos da Água/metabolismo , Acidithiobacillus thiooxidans/crescimento & desenvolvimento , Biodegradação Ambiental , Biofilmes/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Compostos de Ferro/toxicidade , Microscopia Confocal , Microscopia Eletrônica de Varredura , Minerais/toxicidade , Oxirredução , Análise Espectral Raman , Sulfetos/toxicidade , Poluentes Químicos da Água/toxicidade
5.
Biotechnol Bioeng ; 110(8): 2242-51, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23436458

RESUMO

The prokaryotic oxidation of reduced inorganic sulfur compounds (RISCs) is a topic of utmost importance from a biogeochemical and industrial perspective. Despite sulfur oxidizing bacterial activity is largely known, no quantitative approaches to biological RISCs oxidation have been made, gathering all the complex abiotic and enzymatic stoichiometry involved. Even though in the case of neutrophilic bacteria such as Paracoccus and Beggiatoa species the RISCs oxidation systems are well described, there is a lack of knowledge for acidophilic microorganisms. Here, we present the first experimentally validated stoichiometric model able to assess RISCs oxidation quantitatively in Acidithiobacillus thiooxidans (strain DSM 17318), the archetype of the sulfur oxidizing acidophilic chemolithoautotrophs. This model was built based on literature and genomic analysis, considering a widespread mix of formerly proposed RISCs oxidation models combined and evaluated experimentally. Thiosulfate partial oxidation by the Sox system (SoxABXYZ) was placed as central step of sulfur oxidation model, along with abiotic reactions. This model was coupled with a detailed stoichiometry of biomass production, providing accurate bacterial growth predictions. In silico deletion/inactivation highlights the role of sulfur dioxygenase as the main catalyzer and a moderate function of tetrathionate hydrolase in elemental sulfur catabolism, demonstrating that this model constitutes an advanced instrument for the optimization of At. thiooxidans biomass production with potential use in biohydrometallurgical and environmental applications.


Assuntos
Acidithiobacillus thiooxidans/crescimento & desenvolvimento , Acidithiobacillus thiooxidans/metabolismo , Crescimento Quimioautotrófico , Compostos de Enxofre/metabolismo , Biomassa , Modelos Biológicos , Modelos Teóricos , Oxirredução
6.
Appl Microbiol Biotechnol ; 97(6): 2711-24, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22584430

RESUMO

Surfaces of massive chalcopyrite (CuFeS2) electrodes were modified by applying variable oxidation potential pulses under growth media in order to induce the formation of different secondary phases (e.g., copper-rich polysulfides, S n(2-); elemental sulfur, S(0); and covellite, CuS). The evolution of reactivity (oxidation capacity) of the resulting chalcopyrite surfaces considers a transition from passive or inactive (containing CuS and S n(2-)) to active (containing increasing amounts of S(0)) phases. Modified surfaces were incubated with cells of sulfur-oxidizing bacteria (Acidithiobacillus thiooxidans) for 24 h in a specific culture medium (pH 2). Abiotic control experiments were also performed to compare chemical and biological oxidation. After incubation, the density of cells attached to chalcopyrite surfaces, the structure of the formed biofilm, and their exopolysaccharides and nucleic acids were analyzed by confocal laser scanning microscopy (CLSM) and scanning electron microscopy coupled to dispersive X-ray analysis (SEM-EDS). Additionally, CuS and S n(2-)/S(0) speciation, as well as secondary phase evolution, was carried out on biooxidized and abiotic chalcopyrite surfaces using Raman spectroscopy and SEM-EDS. Our results indicate that oxidized chalcopyrite surfaces initially containing inactive S n(2-) and S n(2-)/CuS phases were less colonized by A. thiooxidans as compared with surfaces containing active phases (mainly S(0)). Furthermore, it was observed that cells were partially covered by CuS and S(0) phases during biooxidation, especially at highly oxidized chalcopyrite surfaces, suggesting the innocuous effect of CuS phases during A. thiooxidans performance. These results may contribute to understanding the effect of the concomitant formation of refractory secondary phases (as CuS and inactive S n(2-)) during the biooxidation of chalcopyrite by sulfur-oxidizing microorganisms in bioleaching systems.


Assuntos
Acidithiobacillus thiooxidans/fisiologia , Biofilmes/crescimento & desenvolvimento , Cobre/metabolismo , Eletrodos/microbiologia , Acidithiobacillus thiooxidans/crescimento & desenvolvimento , Acidithiobacillus thiooxidans/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Varredura , Oxirredução , Espectrometria por Raios X , Análise Espectral Raman
7.
Bioprocess Biosyst Eng ; 35(5): 835-42, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22212349

RESUMO

A specially designed electronic nose was coupled to an air-lift bioreactor in order to perform on-line monitoring of released vapors. The sensor array was placed at the top of the bioreactor sensing the headspace in equilibrium with the evolving liquor at any time without the need of aspiration and pumping of gases into a separated sensor chamber. The device was applied to follow the off-gas of a bioreactor with Acidithiobacillus thiooxidans grown on beds of elemental sulfur under aerobic conditions. Evolution was monitored by acid titration, pH and optical density measurements. The electronic nose was capable to differentiate each day of reactor evolution since inoculation within periods marked off culture medium replacements using multivariate data analysis. Excellent discrimination was obtained indicating the potentiality for on-line monitoring in non-perturbed bioreactors. The prospects for electronic nose/bioreactor merging are valuable for whatever the bacterial strain or consortium used in terms of scent markers to monitor biochemical processes.


Assuntos
Acidithiobacillus thiooxidans/crescimento & desenvolvimento , Reatores Biológicos , Gases/análise
8.
Appl Microbiol Biotechnol ; 93(2): 763-75, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21773763

RESUMO

We have applied epifluorescence principles, atomic force microscopy, and Raman studies to the analysis of the colonization process of pyrite (FeS(2)) by sulfuroxidizing bacteria Acidithiobacillus thiooxidans after 1, 15, 24, and 72 h. For the stages examined, we present results comprising the evolution of biofilms, speciation of S (n) (2-) /S(0) species, adhesion forces of attached cells, production and secretion of extracellular polymeric substances (EPS), and its biochemical composition. After 1 h, highly dispersed attached cells in the surface of the mineral were observed. The results suggest initial non-covalent, weak interactions (e.g., van der Waal's, hydrophobic interactions), mediating an irreversible binding mechanism to electrooxidized massive pyrite electrode (eMPE), wherein the initial production of EPS by individual cells is determinant. The mineral surface reached its maximum cell cover between 15 to 24 h. Longer biooxidation times resulted in the progressive biofilm reduction on the mineral surface. Quantification of attached cell adhesion forces indicated a strong initial mechanism (8.4 nN), whereas subsequent stages of mineral colonization indicated stability of biofilms and of the adhesion force to an average of 4.2 nN. A variable EPS (polysaccharides, lipids, and proteins) secretion at all stages was found; thus, different architectural conformation of the biofilms was observed during 120 h. The main EPS produced were lipopolysaccharides which may increase the hydrophobicity of A. thiooxidans biofilms. The highest amount of lipopolysaccharides occurred between 15-72 h. In contrast with abiotic surfaces, the progressive depletion of S (n) (2-) /S(0) was observed on biotic eMPE surfaces, indicating consumption of surface sulfur species. All observations indicated a dynamic biooxidation mechanism of pyrite by A. thiooxidans, where the biofilms stability and composition seems to occur independently from surface sulfur species depletion.


Assuntos
Acidithiobacillus thiooxidans/fisiologia , Biofilmes/crescimento & desenvolvimento , Ferro/metabolismo , Sulfetos/metabolismo , Acidithiobacillus thiooxidans/crescimento & desenvolvimento , Aderência Bacteriana , Microscopia de Força Atômica , Microscopia de Fluorescência , Polissacarídeos Bacterianos/metabolismo , Análise Espectral Raman , Fatores de Tempo
9.
Appl Microbiol Biotechnol ; 95(3): 799-809, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22113561

RESUMO

Massive pyrite (FeS2) electrodes were potentiostatically modified by means of variable oxidation pulse to induce formation of diverse surface sulfur species (S(n)²â», S°). The evolution of reactivity of the resulting surfaces considers transition from passive (e.g., Fe(1-x )S2) to active sulfur species (e.g., Fe(1-x )S(2-y ), S°). Selected modified pyrite surfaces were incubated with cells of sulfur-oxidizing Acidithiobacillus thiooxidans for 24 h in a specific culture medium (pH 2). Abiotic control experiments were also performed to compare chemical and biological oxidation. After incubation, the attached cells density and their exopolysaccharides were analyzed by confocal laser scanning microscopy (CLMS) and atomic force microscopy (AFM) on bio-oxidized surfaces; additionally, S(n)²â»/S° speciation was carried out on bio-oxidized and abiotic pyrite surfaces using Raman spectroscopy. Our results indicate an important correlation between the evolution of S(n)²â»/S° surface species ratio and biofilm formation. Hence, pyrite surfaces with mainly passive-sulfur species were less colonized by A. thiooxidans as compared to surfaces with active sulfur species. These results provide knowledge that may contribute to establishing interfacial conditions that enhance or delay metal sulfide (MS) dissolution, as a function of the biofilm formed by sulfur-oxidizing bacteria.


Assuntos
Acidithiobacillus thiooxidans/fisiologia , Biofilmes/crescimento & desenvolvimento , Ferro/metabolismo , Sulfetos/metabolismo , Acidithiobacillus thiooxidans/crescimento & desenvolvimento , Acidithiobacillus thiooxidans/metabolismo , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica , Microscopia Confocal , Análise Espectral Raman
10.
Appl Microbiol Biotechnol ; 89(3): 771-80, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21191788

RESUMO

The nature of the mineral-bacteria interphase where electron and mass transfer processes occur is a key element of the bioleaching processes of sulfide minerals. This interphase is composed of proteins, metabolites, and other compounds embedded in extracellular polymeric substances mainly consisting of sugars and lipids (Gehrke et al., Appl Environ Microbiol 64(7):2743-2747, 1998). On this respect, despite Acidithiobacilli-a ubiquitous bacterial genera in bioleaching processes (Rawlings, Microb Cell Fact 4(1):13, 2005)-has long been recognized as secreting bacteria (Jones and Starkey, J Bacteriol 82:788-789, 1961; Schaeffer and Umbreit, J Bacteriol 85:492-493, 1963), few studies have been carried out in order to clarify the nature and the role of the secreted protein component: the secretome. This work characterizes for the first time the sulfur (meta)secretome of Acidithiobacillus thiooxidans strain DSM 17318 in pure and mixed cultures with Acidithiobacillus ferrooxidans DSM 16786, identifying the major component of these secreted fractions as a single lipoprotein named here as Licanantase. Bioleaching assays with the addition of Licanantase-enriched concentrated secretome fractions show that this newly found lipoprotein as an active protein additive exerts an increasing effect on chalcopyrite bioleaching rate.


Assuntos
Acidithiobacillus thiooxidans/enzimologia , Acidithiobacillus thiooxidans/metabolismo , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Lipoproteínas/metabolismo , Acidithiobacillus/crescimento & desenvolvimento , Acidithiobacillus/metabolismo , Acidithiobacillus thiooxidans/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA