RESUMO
Background: MicroRNA-421 (miR-421) has been implicated in hepatocellular carcinoma (HCC), but its potential mechanism in HCC remains unclear. Objectives: The study aimed to study the potential mechanism of miR-421 in HCC which is necessary. Methods: The downstream target genes of miR-421 were screened in HCC tissues and cells using miDIP, Targetscan, and starBase databases. Differential analysis, survival analysis, and Pearson correlation analysis were performed between miR-421 and its downstream target genes. Quantitative reverse transcription polymerase chain reaction and western blot were used to assay RNA and protein levels of 4-aminobutyrate aminotransferase (ABAT) and epithelial-mesenchymal transition (EMT)-related proteins. Cell-based assays, including CCK-8, wound healing, transwell, flow cytometry, and metabolic measurements, were implemented to assess proliferation, migration, invasion, cell cycle, and apoptosis of HCC cells with different treatments. Dual-luciferase assay was utilized to detect the targeting relationship between miR-421 and ABAT. Results: miR-421 level was elevated in HCC tissues and cells, and low miR-421 expression hindered phenotype progression of HCC cells. ABAT was identified as a direct target of miR-421 in HCC cells, and miR-421 could inhibit ABAT expression. Rescue assay revealed that miR-421 promoted HCC cell tumorigenesis progress and affected cell metabolic remodeling through down-regulating ABAT. Conclusion: The miR-421/ABAT regulatory axis promoted HCC cell tumorigenesis progress, highlighting its potential as a therapeutic target for HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , 4-Aminobutirato Transaminase/genética , 4-Aminobutirato Transaminase/metabolismo , 4-Aminobutirato Transaminase/uso terapêutico , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/uso terapêutico , Linhagem Celular Tumoral , Carcinogênese/genética , Regulação Neoplásica da Expressão GênicaRESUMO
Daytime restricted feeding (DRF) is an experimental protocol that influences the circadian timing system and underlies the expression of a biological clock known as the food entrained oscillator (FEO). Liver is the organ that reacts most rapidly to food restriction by adjusting the functional relationship between the molecular circadian clock and the metabolic networks. γ-Aminobutyric acid (GABA) is a signaling molecule in the liver, and able to modulate the cell cycle and apoptosis. This study was aimed at characterizing the expression and activity of the mostly mitochondrial enzyme GABA transaminase (GABA-T) during DRF/FEO expression. We found that DRF promotes a sustained increase of GABA-T in the liver homogenate and mitochondrial fraction throughout the entire day-night cycle. The higher amount of GABA-T promoted by DRF was not associated to changes in GABA-T mRNA or GABA-T activity. The GABA-T activity in the mitochondrial fraction even tended to decrease during the light period. We concluded that DRF influences the daily variations of GABA-T mRNA levels, stability, and catalytic activity of GABA-T. These data suggest that the liver GABAergic system responds to a metabolic challenge such as DRF and the concomitant appearance of the FEO.
Assuntos
4-Aminobutirato Transaminase/metabolismo , Restrição Calórica , Ritmo Circadiano , Fígado/enzimologia , 4-Aminobutirato Transaminase/genética , Animais , Western Blotting , Regulação Enzimológica da Expressão Gênica , Masculino , Mitocôndrias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Frações Subcelulares/metabolismo , Ácido gama-AminobutíricoRESUMO
The three genes that form the UGA regulon in Saccharomyces cerevisiae are responsible for the transport and degradation of γ-aminobutyric acid (GABA) in this organism. Despite the differences in the sequence of their promoters, these genes similarly respond to GABA stimuli. The expression of UGA1, UGA2 and UGA4 depends on GABA induction and nitrogen catabolite repression (NCR). The induction of these genes requires the action of at least two positive proteins, the specific Uga3 and the pleiotropic Uga35/Dal81 transcription factors. Here we show that all the members of the UGA regulon, as was already demonstrated for UGA4, are negatively regulated by extracellular amino acids through the SPS amino acid sensor. We also show that this negative effect is caused by a low availability of Uga35/Dal81 transcription factor and that Leu3 transcription factor negatively regulates UGA4 and UGA1 expression but it does not affect UGA2 expression.