Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.648
Filtrar
1.
Food Chem ; 462: 141010, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39217745

RESUMO

In this study, we investigated how different proportions blends of Rhamnogalacturonan-I pectic polysaccharides and hesperidin impact the gut microbiota and metabolites using an in vitro simulated digestion and fermentation model. The results indicated that both of them could modulate the gut microbiota and produce beneficial metabolites. However, their blends in particular proportions (such as 1:1) exhibited remarkable synergistic effects on modulating the intestinal microenvironment, surpassing the effects observed with individual components. Specifically, these blends could benefit the host by increasing short-chain fatty acids production (such as acetate), improving hesperidin bioavailability, producing more metabolites (such as hesperetin, phenolic acids), and promoting the growth of beneficial bacteria. This synergistic and additive effect was inseparable from the role of gut microbiota. Certain beneficial bacteria, such as Blautia, Faecalibacterium, and Prevotella, exhibited strong preferences for those blends, thereby contributing to host health through participating in carbohydrate and flavonoid metabolism.


Assuntos
Bactérias , Microbioma Gastrointestinal , Hesperidina , Pectinas , Hesperidina/farmacologia , Hesperidina/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/classificação , Bactérias/isolamento & purificação , Humanos , Pectinas/metabolismo , Pectinas/química , Pectinas/farmacologia , Fermentação , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Polissacarídeos/química , Ácidos Graxos Voláteis/metabolismo , Digestão , Modelos Biológicos
2.
Methods Mol Biol ; 2855: 195-207, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39354310

RESUMO

Short- and medium-chain fatty acids (SMCFA) are monocarboxylic acids with a carbon chain length of 1-12 carbon atoms. They are mainly produced in humans by the gut microbiota, play crucial metabolic roles, are vital for intestinal health, and have multifaceted impact on immune and neurological functions. Accurate detection and quantification of SMCFA in different human biofluids is achieved using 3-nitro phenylhydrazine (3-NPH) derivatization of the free fatty acids followed by reverse phase liquid chromatography (RPLC) separation and detection by tandem mass spectrometry (MS/MS). Here, we describe the simultaneous measurement of 14 SMCFA and lactate in detail. All 3-NPH-SMCFA-hydrazones are separated in less than 5 min with an 8-min total run time (injection-to-injection). Linear dynamic range over 0.1-500 µM is achieved for most SCFAs, while it is 0.05-100 µM for MCFAs. Validation of the procedure depicts good linearity (R2 > 0.98) and repeatability (CV ≤ 20%). The lower limit of detection (LLOD) is 10-30 nM. The lower limit of quantification (LLOQ) is 50-100 nM for most analytes, while it is 0.5 µM for acetate. In conclusion, the method offers several benefits compared to alternative methods regarding throughput, selectivity, sensitivity, and robustness.


Assuntos
Cromatografia de Fase Reversa , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Humanos , Cromatografia de Fase Reversa/métodos , Ácidos Graxos Voláteis/análise , Ensaios de Triagem em Larga Escala/métodos , Limite de Detecção , Ácidos Graxos/análise , Ácidos Graxos/química , Reprodutibilidade dos Testes
3.
J Environ Sci (China) ; 147: 414-423, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003059

RESUMO

The anaerobic acid production experiments were conducted with the pretreated kitchen waste under pH adjustment. The results showed that pH 8 was considered to be the most suitable condition for acid production, especially for the formation of acetic acid and propionic acid. The average value of total volatile fatty acid at pH 8 was 8814 mg COD/L, 1.5 times of that under blank condition. The average yield of acetic acid and propionic acid was 3302 mg COD/L and 2891 mg COD/L, respectively. The activities of key functional enzymes such as phosphotransacetylase, acetokinase, oxaloacetate transcarboxylase and succinyl-coA transferase were all enhanced. To further explore the regulatory mechanisms within the system, the distribution of microorganisms at different levels in the fermentation system was obtained by microbial sequencing, results indicating that the relative abundances of Clostridiales, Bacteroidales, Chloroflexi, Clostridium, Bacteroidetes and Propionibacteriales, which were great contributors for the hydrolysis and acidification, increased rapidly at pH 8 compared with the blank group. Besides, the proportion of genes encoding key enzymes was generally increased, which further verified the mechanism of hydrolytic acidification and acetic acid production of organic matter under pH regulation.


Assuntos
Ácidos Graxos Voláteis , Concentração de Íons de Hidrogênio , Ácidos Graxos Voláteis/metabolismo , Fermentação , Ácido Acético/metabolismo , Reatores Biológicos
4.
Front Cell Infect Microbiol ; 14: 1436477, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39355267

RESUMO

Aims: Hyperglycemia is one of the adverse effects of tacrolimus (TAC), but the underlying mechanism is not fully identified. We used multi-omics analysis to evaluate the changes in the gut microbiota and metabolic profile of rats with TAC-induced diabetes. Methods: To establish a diabetic animal model, Sprague Dawley rats were divided randomly into two groups. Those in the TAC group received intraperitoneal injections of TAC (3 mg/kg) for 8 weeks, and those in the CON group served as the control. 16S rRNA sequencing was used to analyze fecal microbiota. The metabolites of the two groups were detected and analyzed by nontargeted and targeted metabolomics, including amino acids (AAs), bile acids (BAs), and short-chain fatty acids (SCFAs). Results: The rats treated with TAC exhibited hyperglycemia as well as changes in the gut microbiota and metabolites. Specifically, their gut microbiota had significantly higher abundances of Escherichia-Shigella, Enterococcus, and Allobaculum, and significantly lower abundances of Ruminococcus, Akkermansia, and Roseburia. In addition, they had significantly reduced serum levels of AAs including asparagine, aspartic acid, glutamic acid, and methionine. With respect to BAs, they had significantly higher serum levels of taurocholic acid (TCA), and glycochenodeoxycholic acid (GCDCA), but significantly lower levels of taurodeoxycholic acid (TDCA) and tauroursodeoxycholic acid (TUDCA). There were no differences in the levels of SCFAs between the two groups. Correlations existed among glucose metabolism indexes (fasting blood glucose and fasting insulin), gut microbiota (Ruminococcus and Akkermansia), and metabolites (glutamic acid, hydroxyproline, GCDCA, TDCA, and TUDCA). Conclusions: Both AAs and BAs may play crucial roles as signaling molecules in the regulation of TAC-induced diabetes.


Assuntos
Aminoácidos , Fezes , Microbioma Gastrointestinal , Metabolômica , RNA Ribossômico 16S , Ratos Sprague-Dawley , Tacrolimo , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Tacrolimo/farmacologia , Ratos , Masculino , Fezes/microbiologia , RNA Ribossômico 16S/genética , Aminoácidos/metabolismo , Aminoácidos/sangue , Diabetes Mellitus Experimental/metabolismo , Ácidos e Sais Biliares/metabolismo , Ácidos Graxos Voláteis/metabolismo , Metaboloma/efeitos dos fármacos , Modelos Animais de Doenças , Hiperglicemia/metabolismo , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/genética , Glicemia/metabolismo , Imunossupressores
5.
Gut Microbes ; 16(1): 2409207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39360560

RESUMO

BACKGROUND: Despite achieving endoscopic remission, over 20% of inflammatory bowel disease (IBD) patients experience chronic abdominal pain. Visceral pain and the microbiome exhibit sex-dependent interactions, while visceral pain in IBD shows a sex bias. Our aim was to evaluate whether post-inflammatory microbial perturbations contribute to visceral hypersensitivity in a sex-dependent manner. METHODS: Males, cycling females, ovariectomized, and sham-operated females were given dextran sodium sulfate to induce colitis and allowed to recover. Germ-free recipients received sex-appropriate and cross-sex fecal microbial transplants (FMT) from post-inflammatory donor mice. Visceral sensitivity was assessed by recording visceromotor responses to colorectal distention. The composition of the microbiota was evaluated via 16S rRNA gene V4 amplicon sequencing, while the metabolome was assessed using targeted (short chain fatty acids - SCFA) and semi-targeted mass spectrometry. RESULTS: Post-inflammatory cycling females developed visceral hyperalgesia when compared to males. This effect was reversed by ovariectomy. Both post-inflammatory males and females exhibited increased SCFA-producing species, but only males had elevated fecal SCFA content. FMT from post-inflammatory females transferred visceral hyperalgesia to both males and females, while FMT from post-inflammatory males could only transfer visceral hyperalgesia to males. CONCLUSIONS: Female sex, hormonal status as well as the gut microbiota play a role in pain modulation. Our data highlight the importance of considering biological sex in the evaluation of visceral pain.


Assuntos
Colite , Disbiose , Microbioma Gastrointestinal , Dor Visceral , Masculino , Feminino , Animais , Disbiose/microbiologia , Dor Visceral/microbiologia , Dor Visceral/fisiopatologia , Dor Visceral/metabolismo , Colite/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Microbiota Fecal , Fatores Sexuais , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/metabolismo , RNA Ribossômico 16S/genética , Fezes/microbiologia , Sulfato de Dextrana , Modelos Animais de Doenças , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/análise , Dor Crônica/microbiologia , Dor Crônica/fisiopatologia , Inflamação/microbiologia , Hiperalgesia/microbiologia
6.
Front Immunol ; 15: 1456030, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351241

RESUMO

The human microbiome has recently emerged as a focal point in cancer research, specifically in anti-tumor immunity, immunotherapy, and chemotherapy. This review explores microbial-derived metabolites, emphasizing their crucial roles in shaping fundamental aspects of cancer treatment. Metabolites such as short-chain fatty acids (SCFAs), Trimethylamine N-Oxide (TMAO), and Tryptophan Metabolites take the spotlight, underscoring their diverse origins and functions and their profound impact on the host immune system. The focus is on SCFAs' remarkable ability to modulate immune responses, reduce inflammation, and enhance anti-tumor immunity within the intricate tumor microenvironment (TME). The review critically evaluates TMAO, intricately tied to dietary choices and gut microbiota composition, assessing its implications for cancer susceptibility, progression, and immunosuppression. Additionally, the involvement of tryptophan and other amino acid metabolites in shaping immune responses is discussed, highlighting their influence on immune checkpoints, immunosuppression, and immunotherapy effectiveness. The examination extends to their dynamic interaction with chemotherapy, emphasizing the potential of microbial-derived metabolites to alter treatment protocols and optimize outcomes for cancer patients. A comprehensive understanding of their role in cancer therapy is attained by exploring their impacts on drug metabolism, therapeutic responses, and resistance development. In conclusion, this review underscores the pivotal contributions of microbial-derived metabolites in regulating anti-tumor immunity, immunotherapy responses, and chemotherapy outcomes. By illuminating the intricate interactions between these metabolites and cancer therapy, the article enhances our understanding of cancer biology, paving the way for the development of more effective treatment options in the ongoing battle against cancer.


Assuntos
Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Imunoterapia , Neoplasias , Triptofano , Microambiente Tumoral , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Imunoterapia/métodos , Microbioma Gastrointestinal/imunologia , Microambiente Tumoral/imunologia , Animais , Ácidos Graxos Voláteis/metabolismo , Triptofano/metabolismo , Metilaminas/metabolismo , Metilaminas/imunologia , Antineoplásicos/uso terapêutico
7.
Cell Biochem Funct ; 42(7): e4108, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39228159

RESUMO

Short-chain fatty acids (SCFAs) are essential molecules produced by gut bacteria that fuel intestinal cells and may also influence overall health. An imbalance of SCFAs can result in various acute and chronic diseases, including diabetes, obesity and colorectal cancer (CRC). This review delves into the multifaceted roles of SCFAs, including a brief discussion on their source and various gut-residing bacteria. Primary techniques used for detection of SCFAs, including gas chromatography, high-performance gas chromatography, nuclear magnetic resonance and capillary electrophoresis are also discussed through this article. This review study also compiles various synthesis pathways of SCFAs from diverse substrates such as sugar, acetone, ethanol and amino acids. The different pathways through which SCFAs enter cells for immune response regulation are also highlighted. A major emphasis is the discussion on diseases associated with SCFA dysregulation, such as anaemia, brain development, CRC, depression, obesity and diabetes. This includes exploring the relationship between SCFA levels across ethnicities and their connection with blood pressure and CRC. In conclusion, this review highlights the critical role of SCFAs in maintaining gut health and their implications in various diseases, emphasizing the need for further research on SCFA detection, synthesis and their potential as diagnostic biomarkers. Future studies of SCFAs will pave the way for the development of novel diagnostic tools and therapeutic strategies for optimizing gut health and preventing diseases associated with SCFA dysregulation.


Assuntos
Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Humanos , Ácidos Graxos Voláteis/metabolismo , Animais , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Obesidade/metabolismo
8.
Gut Microbes ; 16(1): 2392864, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39340210

RESUMO

Weight loss improves metabolic dysfunction-associated steatohepatitis (MASH). We investigated whether there were associated changes in intestinal permeability, short-chain fatty acids (SCFAs), and gut microbiota, which are implicated in the pathophysiology of MASH. Sixteen adults with MASH, moderate fibrosis, and obesity received a low-energy total diet replacement program for 12 weeks and stepped food re-introduction over the following 12 weeks (ISRCTN12900952). Intestinal permeability, fecal SCFAs, and fecal microbiota were assessed at 0, 12, and 24 weeks. Data were analyzed using mixed-effects linear regression and sparse partial least-squares regression. Fourteen participants completed the trial, lost 15% (95% CI: 11.2-18.6%) of their weight, and 93% had clinically relevant reductions in liver disease severity markers. Serum zonulin concentrations were reduced at both 12 and 24 weeks (152.0 ng/ml, 95% CI: 88.0-217.4, p < 0.001). Each percentage point of weight loss was associated with a 13.2 ng/mL (95% CI: 3.8-22.5, p < 0.001) reduction in zonulin. For every 10 ng/mL reduction in zonulin, there was a 6.8% (95% CI: 3.5%-10.2, p < 0.001) reduction in liver fat. There were reductions in SCFA and alpha diversity evenness as well as increases in beta diversity of the gut microbiota at 12 weeks, but the changes did not persist at 24 weeks. In conclusion, substantial dietary energy restriction is associated with significant improvement in MASH markers alongside reduction in intestinal permeability. Changes in gut microbiota and SCFA were not maintained with sustained reductions in weight and liver fat, suggesting that microbiome modulation may not explain the relationship between weight loss and improvements in MASH.


Assuntos
Fezes , Microbioma Gastrointestinal , Haptoglobinas , Cirrose Hepática , Permeabilidade , Redução de Peso , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Cirrose Hepática/microbiologia , Cirrose Hepática/metabolismo , Adulto , Haptoglobinas/metabolismo , Fezes/microbiologia , Fezes/química , Precursores de Proteínas/metabolismo , Precursores de Proteínas/sangue , Ácidos Graxos Voláteis/metabolismo , Obesidade/microbiologia , Obesidade/metabolismo , Obesidade/dietoterapia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/microbiologia , Dieta Redutora , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Toxina da Cólera/metabolismo , Toxina da Cólera/sangue , Idoso , Função da Barreira Intestinal
9.
Nutrients ; 16(17)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39275251

RESUMO

Inulin is a plant polysaccharide which, due to its chemical structure, is not digestible by human gut enzymes but by some bacteria of the human microbiota, acting as a prebiotic. Consequently, inulin consumption has been associated with changes in the composition of the intestinal microbiota related to an improvement of the metabolic state, counteracting different obesity-related disturbances. However, the specific mechanisms of action, including bacterial changes, are not exactly known. Here, a bibliographic review was carried out to study the main effects of inulin on human metabolic health, with a special focus on the mechanisms of action of this prebiotic. Inulin supplementation contributes to body weight and BMI control, reduces blood glucose levels, improves insulin sensitivity, and reduces inflammation markers, mainly through the selective favoring of short-chain fatty acid (SCFA)-producer species from the genera Bifidobacterium and Anaerostipes. These SCFAs have been shown to ameliorate glucose metabolism and decrease hepatic lipogenesis, reduce inflammation, modulate immune activity, and improve anthropometric parameters such as body weight or BMI. In conclusion, the studies collected suggest that inulin intake produces positive metabolic effects through the improvement of the intestinal microbiota and through the metabolites produced by its fermentation.


Assuntos
Microbioma Gastrointestinal , Inulina , Prebióticos , Humanos , Inulina/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Ácidos Graxos Voláteis/metabolismo , Obesidade/metabolismo , Obesidade/microbiologia , Índice de Massa Corporal , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Resistência à Insulina
10.
Nutrients ; 16(17)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39275259

RESUMO

Traditional fermented foods are known to offer cardiovascular health benefits. However, the potential of fermented Chinese chives (FCC) in reducing coronary heart disease (CHD) remains unclear. This study employed anaerobic fermentation to investigate Lactiplantibacillus plantarum (L. plantarum) P470 from FCC. The results indicated that L. plantarum P470 enhanced hydroxyl radical scavenging and exhibited anti-inflammatory effects on RAW264.7 macrophages in the fecal fermentation supernatant of CHD patients. These effects were attributed to the modulation of gut microbiota and metabolites, including short-chain fatty acids (SCFAs). Specifically, L. plantarum P470 increased the abundance of Bacteroides and Lactobacillus while decreasing Escherichia-Shigella, Enterobacter, Veillonella, Eggerthella, and Helicobacter in CHD patient fecal samples. Furthermore, L. plantarum P470 regulated the biosynthesis of unsaturated fatty acids and linoleic acid metabolism. These findings suggest that L. plantarum P470 from FCC can improve the fecal physiological status in patients with CHD by modulating intestinal microbiota, promoting SCFA production, and regulating lipid metabolism.


Assuntos
Doença das Coronárias , Ácidos Graxos Voláteis , Fezes , Alimentos Fermentados , Microbioma Gastrointestinal , Lactobacillus plantarum , Humanos , Fezes/microbiologia , Doença das Coronárias/microbiologia , Camundongos , Animais , Alimentos Fermentados/microbiologia , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/análise , Masculino , Fermentação , Feminino , Pessoa de Meia-Idade , Células RAW 264.7 , Idoso , Probióticos/farmacologia
11.
Nutrients ; 16(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39275295

RESUMO

Rice bran, which is abundant in dietary fiber and phytochemicals, provides multiple health benefits. Nonetheless, its effects on neuroinflammation and gut microbiota in postmenopausal conditions are still not well understood. This study investigated the effects of rice bran and/or tea seed oil supplementation in d-galactose-injected ovariectomized (OVX) old mice fed a fructose drink. The combination of d-galactose injection, ovariectomy, and fructose drink administration creates a comprehensive model that simulates aging in females under multiple metabolic stressors, including oxidative stress, estrogen deficiency, and high-sugar diets, and allows the study of their combined impact on metabolic disorders and related diseases. Eight-week-old and 6-8-month-old female C57BL/6 mice were used. The mice were divided into six groups: a sham + young mice, a sham + old mice, an OVX + soybean oil, an OVX + soybean oil with rice bran, an OVX + tea seed oil (TO), and an OVX + TO with rice bran diet group. The OVX groups were subcutaneously injected with d-galactose (100 mg/kg/day) and received a 15% (v/v) fructose drink. The rice bran and tea seed oil supplementation formed 10% of the diet (w/w). The results showed that the rice bran with TO diet increased the number of short-chain fatty acid (SCFA)-producing Clostridia and reduced the number of endotoxin-producing Tannerellaceae, which mitigated imbalances in the gut-liver-brain axis. Rice bran supplementation reduced the relative weight of the liver, levels of hepatic triglycerides and total cholesterol; aspartate transaminase and alanine aminotransferase activity; brain levels of proinflammatory cytokines, including interleukin-1ß and tumor necrosis factor-α; and plasma 8-hydroxy-2-deoxyguanosine. This study concludes that rice bran inhibits hepatic fat accumulation, which mitigates peripheral metaflammation and oxidative damage and reduces neuroinflammation in the brain.


Assuntos
Frutose , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Oryza , Ovariectomia , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Feminino , Camundongos , Doenças Neuroinflamatórias , Fibras na Dieta/farmacologia , Fibras na Dieta/administração & dosagem , Ácidos Graxos Voláteis/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Galactose , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos
12.
Gut Microbes ; 16(1): 2393270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39284033

RESUMO

Short-chain fatty acids (SCFAs) - acetate, propionate, and butyrate - are important bacterial fermentation metabolites regulating many important aspects of human physiology. Decreases in the concentrations of any or multiple SCFAs are associated with various detrimental effects to the host. Previous research has broadly focused on gut microbiome produced SCFAs as a group, with minimal distinction between acetate, propionate, and butyrate independently, each with significantly different host effects. In this review, we comprehensively delineate the roles of these SCFAs with emphasis on receptor affinity, signaling pathway involvement, and net host physiologic effects. Butyrate is highlighted due to its unique role in gastrointestinal-associated functions, especially maintaining gut barrier integrity. Butyrate functions by promoting epithelial tight junctions, serving as fuel for colonocyte ATP production, and modulating the immune system. Interaction with the immune system occurs locally in the gastrointestinal tract and systemically in the brain. Investigation into research conducted on butyrate production pathways and specific bacterial players involved highlights a unique risk associated with use of gram-positive targeted antibiotics. We review and discuss evidence showing the relationship between the butyrate-producing gram-positive genus, Roseburia, and susceptibility to commonly prescribed, widely used gram-positive antibiotics. Considering gut microbiome implications when choosing antibiotic therapy may benefit health outcomes in patients.


Assuntos
Butiratos , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiologia , Ácidos Graxos Voláteis/metabolismo , Animais , Butiratos/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/metabolismo , Antibacterianos
13.
Bioresour Technol ; 412: 131400, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39218363

RESUMO

Dynamic transformation of dissolved organic matter (DOM) contributes to short-chain fatty acids (SCFAs) production during anaerobic digestion. However, the impact of refined transformation of DOM ranked by molecular weight (MW) on SCFAs has never been investigated. Results indicated that DOM conversion order was 3500-7000 Da>(MW>14000 Da) > 7000-4000 Da during hydrolysis stage, while it was independent of their MW in acidogenesis phase and followed a low to high MW order during methanogenesis stage. Proteins-like DOMs with different MW were closely related to SCFAs. Eight groups of microorganisms (e.g., Bacillus and Caldicoprobacter) responsible for the conversion of proteins-like DOMs to SCFAs. The possible routes linking environmental properties to microorganisms-proteins-like DOMs-SCFAs connections were constructed. Microbial activity modifications by regulating moisture, pH, NO3--N and NH4+-N can expedite the conversion of proteins-like DOMs to SCFAs. The study emphasizes the importance of MW-classification-based biotransformation of organic waste, offering a potential strategy to enhance anaerobic digestion performance.


Assuntos
Ácidos Graxos Voláteis , Peso Molecular , Ácidos Graxos Voláteis/metabolismo , Anaerobiose , Compostos Orgânicos/metabolismo , Bactérias/metabolismo , Biotransformação , Hidrólise , Reatores Biológicos
14.
J Nutr Sci ; 13: e44, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39345252

RESUMO

Ruminal microbes catabolise feed carbohydrates mainly into SCFA, methane (CH4), and carbon dioxide (CO2), with predictable relationships between fermentation end products and net microbial increase. We used a closed in vitro batch culture system, incubating grass and maize silages, and measured total gas production at 8 and 24 h, as well as the truly degraded substrate, the net production of SCFA, CH4, and microbial biomass at 24 h, and investigated the impact of silage type and inoculum microbial mass on fermentation direction. Net microbial yield was negatively correlated with total gas at 8 h (P < 0•001), but not at 24 h (P = 0•052), and negatively correlated with CH4 production (P < 0•001). Higher initial inoculum microbial mass was related to a lower net microbial yield (P < 0•001) but a higher CH4 production (P < 0•001). A significant difference between grass silage and maize silage was detected within the context of these relationships (P < 0•050). The metabolic hydrogen (2H) recovery was 102.8 ± 12.3 % for grass silages and 118.8 ± 13.3% for maize silages. Overall, grass silages favoured more substrate conversion to microbial biomass and less to fermentation end products than maize silage. Lower inoculum microbial mass facilitated more microbial growth and, because of the 2H sink by microbial synthesis, decreased CH4 production.


Assuntos
Biomassa , Fermentação , Metano , Poaceae , Silagem , Zea mays , Metano/metabolismo , Silagem/microbiologia , Zea mays/microbiologia , Animais , Rúmen/microbiologia , Rúmen/metabolismo , Dióxido de Carbono/metabolismo , Ácidos Graxos Voláteis/metabolismo , Hidrogênio/metabolismo
15.
Int J Mol Sci ; 25(18)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39337526

RESUMO

The objective of this review is to provide a comprehensive examination of the role of microbial metabolites in the progression of neurodegenerative diseases, as well as to investigate potential therapeutic interventions targeting the microbiota. A comprehensive literature search was conducted across the following databases: PubMed, Scopus, Web of Science, ScienceDirect, and Wiley. Key terms related to the gut microbiota, microbial metabolites, neurodegenerative diseases, and specific metabolic products were used. The review included both preclinical and clinical research articles published between 2000 and 2024. Short-chain fatty acids have been demonstrated to play a crucial role in modulating neuroinflammation, preserving the integrity of the blood-brain barrier, and influencing neuronal plasticity and protection. Furthermore, amino acids and their derivatives have been demonstrated to exert a significant influence on CNS function. These microbial metabolites impact CNS health by regulating intestinal permeability, modulating immune responses, and directly influencing neuroinflammation and oxidative stress, which are integral to neurodegenerative diseases. Therapeutic strategies, including prebiotics, probiotics, dietary modifications, and fecal microbiota transplantation have confirmed the potential to restore microbial balance and enhance the production of neuroprotective metabolites. Furthermore, novel drug developments based on microbial metabolites present promising therapeutic avenues. The gut microbiota and its metabolites represent a promising field of research with the potential to advance our understanding of and develop treatments for neurodegenerative diseases.


Assuntos
Microbioma Gastrointestinal , Doenças Neurodegenerativas , Probióticos , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/terapia , Doenças Neurodegenerativas/microbiologia , Animais , Probióticos/uso terapêutico , Prebióticos , Transplante de Microbiota Fecal , Progressão da Doença , Barreira Hematoencefálica/metabolismo , Estresse Oxidativo , Ácidos Graxos Voláteis/metabolismo
16.
Nutrients ; 16(18)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39339734

RESUMO

INTRODUCTION: The importance of diet in shaping the gut microbiota is well established and may help improve an individual's overall health. Many other factors, such as genetics, age, exercise, antibiotic therapy, or tobacco use, also play a role in influencing gut microbiota. AIM: This narrative review summarizes how three distinct dietary types (plant-based, Mediterranean, and Western) affect the composition of gut microbiota and the development of non-communicable diseases (NCDs). METHODS: A comprehensive literature search was conducted using the PubMed, Web of Science, and Scopus databases, focusing on the keywords "dietary pattern", "gut microbiota" and "dysbiosis". RESULTS: Both plant-based and Mediterranean diets have been shown to promote the production of beneficial bacterial metabolites, such as short-chain fatty acids (SCFAs), while simultaneously lowering concentrations of trimethylamine-N-oxide (TMAO), a molecule associated with negative health outcomes. Additionally, they have a positive impact on microbial diversity and therefore are generally considered healthy dietary types. On the other hand, the Western diet is a typical example of an unhealthy nutritional approach leading to an overgrowth of pathogenic bacteria, where TMAO levels rise and SCFA production drops due to gut dysbiosis. CONCLUSION: The current scientific literature consistently highlights the superiority of plant-based and Mediterranean dietary types over the Western diet in promoting gut health and preventing NCDs. Understanding the influence of diet on gut microbiota modulation may pave the way for novel therapeutic strategies.


Assuntos
Dieta Mediterrânea , Disbiose , Microbioma Gastrointestinal , Doenças não Transmissíveis , Humanos , Microbioma Gastrointestinal/fisiologia , Doenças não Transmissíveis/prevenção & controle , Dieta Ocidental/efeitos adversos , Dieta Vegetariana , Dieta , Metilaminas/metabolismo , Ácidos Graxos Voláteis/metabolismo
18.
Nat Commun ; 15(1): 8278, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333064

RESUMO

Despite recent advances, severe acute pancreatitis (SAP) remains a lethal inflammation with limited treatment options. Here, we provide compelling evidence of GV-971 (sodium oligomannate), an anti-Alzheimer's medication, as being a protective agent in various male mouse SAP models. Microbiome sequencing, along with intestinal microbiota transplantation and mass cytometry technology, unveil that GV-971 reshapes the gut microbiota, increasing Faecalibacterium populations and modulating both peripheral and intestinal immune systems. A metabolomics analysis of cecal contents from GV-971-treated SAP mice further identifies short-chain fatty acids, including propionate and butyrate, as key metabolites in inhibiting macrophage M1 polarization and subsequent lethal inflammation by blocking the MAPK pathway. These findings suggest GV-971 as a promising therapeutic for SAP by targeting the microbiota metabolic immune axis.


Assuntos
Modelos Animais de Doenças , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Pancreatite , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos , Pancreatite/imunologia , Pancreatite/microbiologia , Pancreatite/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Ácidos Graxos Voláteis/metabolismo , Transplante de Microbiota Fecal , Humanos , Metabolômica
19.
Ecotoxicol Environ Saf ; 284: 116959, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39232295

RESUMO

BACKGROUND: Endemic fluorosis refers to the condition when individuals are exposed to excessive amounts of fluoride ion due to living in a region characterized by elevated levels of fluorine in the drinking water, food, and/or air. In Pakistan, a substantial proportion of the population is thereby affected, posing a public health concern. OBJECTIVES: Assessing how the gut microbiota and its metabolic profiles are impacted by chronic exposure to fluoride in drinking water (that caused Dental Fluorosis) as well as to perceive how this microbiota is connected to adverse health outcomes prevailing with fluoride exposure. METHODS: Drinking water (n=27) and biological samples (n=100) of blood, urine and feces were collected from 70 high fluoride exposed (with Dental Fluorosis) and 30 healthy control (without Dental Fluorosis) subjects. Water and urinary fluoride concentrations were determined. Serum/plasma biochemical testing was performed. Fecal DNA extraction, 16S rRNA analysis of microbial taxa, their predicted metabolic function and fecal short chain fatty acids (SCFAs) quantification were carried out. RESULTS: The study revealed that microbiota taxonomic shifts and their metabolic characterization had been linked to certain host clinical parameters under the chronic fluoride exposure. Some sets of genera showed strong specificity to water and urine fluoride concentrations, Relative Fat Mass index and SCFAs. The SCFAs response in fluoride-exposed samples was observed to be correlated with bacterial taxa that could contribute to adverse health effects. CONCLUSIONS: Microbial dysbiosis as a result of endemic fluorosis exhibits a structure that is associated with risk of metabolic deregulation and is implicated in various diseases. Our results may form the development of novel interventions and may have utility in diagnosis and monitoring.


Assuntos
Água Potável , Fezes , Fluoretos , Fluorose Dentária , Microbioma Gastrointestinal , Paquistão , Fluoretos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Água Potável/química , Água Potável/microbiologia , Masculino , Fezes/microbiologia , Fezes/química , Feminino , Adulto , Adulto Jovem , Poluentes Químicos da Água/análise , RNA Ribossômico 16S , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Pessoa de Meia-Idade , Adolescente
20.
J Agric Food Chem ; 72(39): 21594-21609, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39303156

RESUMO

The diet in early life is essential for the growth and intestinal health later in life. However, beneficial effects of a diet enriched in branched short-chain fatty acids (BSCFAs) for infants are ambiguous. This study aimed to develop a novel fermented protein food, enriched with BSCFAs and assess the effects of dry and wet ferment products on young pig development, nutrient absorption, intestinal barrier function, and gut microbiota and metabolites. A total of 18 young pigs were randomly assigned to three groups. The dry corn gluten-wheat bran mixture (DFCGW) and wet corn gluten-wheat bran mixture (WFCGW) were utilized as replacements for 10% soybean meal in the basal diet. Our results exhibited that the WFCGW diet significantly increased the growth performance of young pigs, enhanced the expression of tight junction proteins, and regulated associated cytokines expression in the colonic mucosa. Simultaneously, the WFCGW diet led to elevated levels of colonic isobutyric and isovaleric acid, as well as the activation of GPR41 and GPR109A. Furthermore, more potential probiotics including Lactobacillus, Megasphaera, and Lachnospiraceae_ND3007_group were enriched in the WFCGW group and positively associated with the beneficial metabolites such as 5-hydroxyindole-3-acetic acid. Differential metabolite KEGG pathway analysis suggested that WFCGW might exert gut health benefits by modulating tryptophan metabolism. In addition, the WFCGW diet significantly increased ghrelin concentrations in serum and hypothalamus and promoted the appetite of young pigs by activating hypothalamic NPY/AGRP neurons. This study extends the knowledge of BSCFAs and provides a reference for the fermented food application in the infant diet.


Assuntos
Ração Animal , Bactérias , Ácidos Graxos Voláteis , Alimentos Fermentados , Microbioma Gastrointestinal , Animais , Suínos/metabolismo , Suínos/crescimento & desenvolvimento , Ração Animal/análise , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/crescimento & desenvolvimento , Ácidos Graxos Voláteis/metabolismo , Alimentos Fermentados/análise , Alimentos Fermentados/microbiologia , Fermentação , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Intestinos/metabolismo , Masculino , Zea mays/metabolismo , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA