Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Immunobiology ; 224(5): 710-719, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31178241

RESUMO

Persistent extracellular tissue-dwelling pathogens face the challenge of antibody-dependent activation of the classical complement pathway (CCP). A prime example of this situation is the larva of the cestode Echinococcus granulosus sensu lato, causing cystic echinococcosis. This tissue-dwelling, bladder-like larva is bounded by a cellular layer protected by the outermost acellular "laminated layer" (LL), to which host antibodies bind. The LL is made up of a mucin meshwork and interspersed nano-deposits of calcium inositol hexakisphosphate (calcium InsP6). We previously reported that calcium InsP6 bound C1q, apparently initiating CCP activation. The present work dissects CCP activation on the LL. Most of the C1 binding activity in the LL corresponded to calcium InsP6, and this binding was enhanced by partial proteolysis of the mucin meshwork. The remaining C1 binding activity was attributable to host antibodies, which included CCP-activating IgG isotypes. Calcium InsP6 made only a weak contribution to early CCP activation on the LL, suggesting inefficient C1 complex activation as reported for other polyanions. CCP activation on calcium InsP6 gave rise to a dominant population of C3b deposited onto calcium InsP6 itself that appeared to be quickly inactivated. Apparently as a result of inefficient initiation plus C3b inactivation, calcium InsP6 made no net contribution to C5 activation. We propose that the LL protects the underlying parasite cells from CCP activation through the combined effects of inefficient permeation of C1 through the mucins and C1 retention on calcium InsP6. This mechanism does not result in C5 activation, which is known to drive parasite-damaging inflammation.


Assuntos
Antígenos de Helmintos/imunologia , Via Clássica do Complemento , Proteínas do Sistema Complemento/imunologia , Echinococcus granulosus/imunologia , Ácido Fítico/imunologia , Animais , Antígenos de Helmintos/química , Ativação do Complemento , Proteínas do Sistema Complemento/metabolismo , Equinococose/imunologia , Equinococose/parasitologia , Interações Hospedeiro-Parasita/imunologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Ácido Fítico/química , Ligação Proteica
2.
Parasite Immunol ; 30(6-7): 354-64, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18444958

RESUMO

The larva of the cestode Echinococcus granulosus (hydatid cyst) is protected by the acellular laminated layer (LL). The mechanisms that make this thick coat a poor activator of host complement are incompletely understood. The structure binds, through unknown motifs, the host regulator of the alternative complement pathway (ACP), factor H. A second potential mechanism of ACP regulation, the inhibition of factor B activation, was detected in assays employing purified components (Immunopharmacology 42 : 91). The inhibitor was subsequently identified as myo-inositol hexakisphosphate (InsP(6)), which in the form of nano-deposits is a major component of the LL (Biochem J 362 : 297; J Cell Biochem 93 : 1272; FEBS J 273 : 3192). In this report we show that colloidal InsP(6 )solids inhibit factor B activation, through adsorption and associated impairment of C3b binding. However, this interaction is not relevant in the presence of serum proteins. In serum, InsP(6) deposits instead bind C1q, and initiate complement activation. This activation is curtailed through efficient C3b inactivation, previously shown to be entirely factor H-dependent, and now observed to be independent of the InsP(6) deposits. Therefore the complement resistance of the LL must be based on functional factor H binding sites present on the mucin-based meshwork that is its other major constituent.


Assuntos
Via Alternativa do Complemento , Equinococose/imunologia , Echinococcus granulosus/imunologia , Ácido Fítico/imunologia , Animais , Complemento C1q/imunologia , Complemento C1q/metabolismo , Complemento C3b/imunologia , Fator B do Complemento/antagonistas & inibidores , Fator H do Complemento/imunologia , Humanos , Ácido Fítico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA