Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 14(9): 637, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37752118

RESUMO

Since the discovery of ferroptosis, it has been postulated that this type of cell death could be utilized in treatments for cancer. Unfortunately, several highly aggressive tumor models are resistant to the pharmacological induction of ferroptosis. However, with the use of combined therapies, it is possible to recover sensitivity to ferroptosis in certain cellular models. Here, we discovered that co-treatment with the metabolically stable ferroptosis inducer imidazole ketone erastin (IKE) and the oxidized form of vitamin C, dehydroascorbic acid (DHAA), is a powerful therapy that induces ferroptosis in tumor cells previously resistant to IKE-induced ferroptosis. We determined that DHAA and IKE + DHAA delocalize and deplete GPX4 in tumor cells, specifically inducing lipid droplet peroxidation, which leads to ferroptosis. Moreover, in vivo, IKE + DHAA has high efficacy with regard to the eradication of highly aggressive tumors such as glioblastomas. Thus, the use of IKE + DHAA could be an effective and safe therapy for the eradication of difficult-to-treat cancers.


Assuntos
Ferroptose , Neoplasias , Humanos , Ácido Desidroascórbico/farmacologia , Gotículas Lipídicas , Morte Celular , Peroxidação de Lipídeos
2.
Antioxid Redox Signal ; 37(7-9): 538-559, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35166128

RESUMO

Aims: Glioblastoma (GB) is one of the most aggressive brain tumors. These tumors modify their metabolism, increasing the expression of glucose transporters, GLUTs, which incorporate glucose and the oxidized form of vitamin C, dehydroascorbic acid (DHA). We hypothesized that GB cells preferentially take up DHA, which is intracellularly reduced and compartmentalized into the endoplasmic reticulum (ER), promoting collagen biosynthesis and an aggressive phenotype. Results: Our results showed that GB cells take up DHA using GLUT1, while GLUT3 and sodium-dependent vitamin C transporter 2 (SVCT2) are preferably intracellular. Using a baculoviral system and reticulum-enriched extracts, we determined that SVCT2 is mainly located in the ER and corresponds to a short isoform. Ascorbic acid (AA) was compartmentalized, stimulating collagen IV secretion and increasing in vitro and in situ cell migration. Finally, orthotopic xenografts induced in immunocompetent guinea pigs showed that vitamin C deficiency retained collagen, reduced blood vessel invasion, and affected glomeruloid vasculature formation, all pathological conditions associated with malignancy. Innovation and Conclusion: We propose a functional role for vitamin C in GB development and progression. Vitamin C is incorporated into the ER of GB cells, where it favors the synthesis of collagen, thus impacting tumor development. Collagen secreted by tumor cells favors the formation of the glomeruloid vasculature and enhances perivascular invasion. Antioxid. Redox Signal. 37, 538-559.


Assuntos
Ácido Ascórbico , Glioblastoma , Animais , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacologia , Colágeno/metabolismo , Ácido Desidroascórbico/metabolismo , Ácido Desidroascórbico/farmacologia , Glucose/metabolismo , Cobaias , Humanos , Transportadores de Sódio Acoplados à Vitamina C/metabolismo , Vitaminas
3.
J Cell Physiol ; 235(12): 9773-9784, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32437012

RESUMO

Oxidative stress and inflammation are crucial factors that increase with age. In the progression of multiple age-related diseases, antioxidants and bioactive compounds have been recognized as useful antiaging agents. Oxidized or reduced vitamin C exerts different actions on tissues and has different metabolism and uptake. In this study, we analyzed the antiaging effect of vitamin C, both oxidized and reduced forms, in renal aging using laser microdissection, quantitative reverse-transcription polymerase chain reaction, and immunohistochemical analyses. In the kidneys of old SAM mice (10 months of age), a model of accelerated senescence, vitamin C, especially in the oxidized form (dehydroascorbic acid [DHA]) improves renal histology and function. Serum creatinine levels and microalbuminuria also decrease after treatment with a decline in azotemia. In addition, sodium-vitamin C cotransporter isoform 1 levels, which were increased during aging, are normalized. In contrast, the pattern of glucose transporter 1 expression is not affected by aging or vitamin C treatment. We conclude that oxidized and reduced vitamin C are potent antiaging therapies and that DHA reverses the kidney damage observed in senescence-accelerated prone mouse 8 to a greater degree.


Assuntos
Ácido Ascórbico/farmacologia , Ácido Desidroascórbico/farmacologia , Inflamação/genética , Rim/efeitos dos fármacos , Transportadores de Sódio Acoplados à Vitamina C/genética , Envelhecimento/genética , Envelhecimento/patologia , Animais , Ácido Ascórbico/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 1/genética , Humanos , Inflamação/patologia , Rim/ultraestrutura , Camundongos , Estresse Oxidativo/efeitos dos fármacos
4.
Mol Neurobiol ; 53(9): 5847-5863, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26497038

RESUMO

Ascorbic acid (AA), the reduced form of vitamin C, is incorporated into neurons via the sodium ascorbate co-transporter SVCT2. However, this transporter is not expressed in astrocytes, which take up the oxidized form of vitamin C, dehydroascorbic acid (DHA), via the facilitative hexose transporter GLUT1. Therefore, neuron and astrocyte interactions are thought to mediate vitamin C recycling in the nervous system. Although astrocytes are essential for the antioxidant defense of neurons under oxidative stress, a condition in which a large amount of ROS is generated that may favor the extracellular oxidation of AA and the subsequent neuronal uptake of DHA via GLUT3, potentially increasing oxidative stress in neurons. This study analyzed the effects of oxidative stress and DHA uptake on neuronal cell death in vitro. Different analyses revealed the presence of the DHA transporters GLUT1 and GLUT3 in Neuro2a and HN33.11 cells and in cortical neurons. Kinetic analyses confirmed that all cells analyzed in this study possess functional GLUTs that take up 2-deoxyglucose and DHA. Thus, DHA promotes the death of stressed neuronal cells, which is reversed by incubating the cells with cytochalasin B, an inhibitor of DHA uptake by GLUT1 and GLUT3. Additionally, the presence of glial cells (U87 and astrocytes), which promote DHA recycling, reverses the observed cell death of stressed neurons. Taken together, these results indicate that DHA promotes the death of stressed neurons and that astrocytes are essential for the antioxidative defense of neurons. Thus, the astrocyte-neuron interaction may function as an essential mechanism for vitamin C recycling, participating in the antioxidative defense of the brain.


Assuntos
Astrócitos/metabolismo , Ácido Desidroascórbico/farmacologia , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Córtex Cerebral/patologia , Citocalasina B/farmacologia , Desoxiglucose/metabolismo , Feminino , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Humanos , Cinética , Camundongos , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ratos Sprague-Dawley
5.
J Neurochem ; 129(4): 663-71, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24460956

RESUMO

Vitamin C is an essential factor for neuronal function and survival, existing in two redox states, ascorbic acid (AA), and its oxidized form, dehydroascorbic acid (DHA). Here, we show uptake of both AA and DHA by primary cultures of rat brain cortical neurons. Moreover, we show that most intracellular AA was rapidly oxidized to DHA. Intracellular DHA induced a rapid and dramatic decrease in reduced glutathione that was immediately followed by a spontaneous recovery. This transient decrease in glutathione oxidation was preceded by an increase in the rate of glucose oxidation through the pentose phosphate pathway (PPP), and a concomitant decrease in glucose oxidation through glycolysis. DHA stimulated the activity of glucose-6-phosphate dehydrogenase, the rate-limiting enzyme of the PPP. Furthermore, we found that DHA stimulated the rate of lactate uptake by neurons in a time- and dose-dependent manner. Thus, DHA is a novel modulator of neuronal energy metabolism by facilitating the utilization of glucose through the PPP for antioxidant purposes.


Assuntos
Ácido Desidroascórbico/farmacologia , Metabolismo Energético/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacologia , Transporte Biológico , Células Cultivadas , Ácido Desidroascórbico/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Glutationa/metabolismo , Glicólise/efeitos dos fármacos , Lactatos/metabolismo , Modelos Neurológicos , Neurônios/metabolismo , Oxirredução , Via de Pentose Fosfato/efeitos dos fármacos , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Transportadores de Sódio Acoplados à Vitamina C/metabolismo
6.
Redox Rep ; 15(6): 234-42, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21208522

RESUMO

The antioxidant activities of the extract and its relevant fraction as well as isolated compounds from the dead bark of Araucaria angustifolia are presented. This tree represents the Mixed Ombrophile Forest, which is endangered due to extensive logging. The dead bark of Araucaria is naturally discarded by the tree, and its hydroalcoholic crude extract has exhibited protective qualities against stress induced by H(2)O(2) in cell culture. Using several in vitro models, here we describe the antioxidant potential of the crude extract and its component ethyl acetate fraction and also of some compounds isolated from the ethyl acetate fraction. We provide the first description of the isolation of two natural product afzelechin derivatives. The extract and isolated compounds, particularly epiafzelechin protocatechuate (5), displayed very high antioxidant activity, as did compound 4, quercetin, which is well known for its antioxidant properties. In a DPPH assay, compound 5 exhibited an IC(50) of 0.7 µM; in a lipid peroxidation assay; IC(50) values of 21 µM and 35 µM were obtained when the oxidation was induced by UV and ascorbate free radicals, respectively.


Assuntos
Antioxidantes/química , Casca de Planta/química , Extratos Vegetais/química , Traqueófitas/química , Ácido Desidroascórbico/análogos & derivados , Ácido Desidroascórbico/farmacologia , Radical Hidroxila/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos da radiação , Estrutura Molecular , Oxirredução/efeitos dos fármacos , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA