Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.816
Filtrar
1.
Carbohydr Polym ; 345: 122555, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39227118

RESUMO

As a typical C4 plant and important crop worldwide, maize is susceptible to drought. In maize, transitory starch (TS) turnover occurs in the vascular bundle sheath of leaves, differing from that in Arabidopsis (a C3 plant). This process, particularly its role in drought tolerance and the key starch-hydrolyzing enzymes involved, is not fully understood. We discovered that the expression of the ß-amylase (BAM) gene ZmBAM8 is highly upregulated in the drought-tolerant inbred line Chang7-2t. Inspired by this finding, we systematically investigated TS degradation in maize lines, including Chang7-2t, Chang7-2, B104, and ZmBAM8 overexpression (OE) and knockout (KO) lines. We found that ZmBAM8 was significantly induced in the vascular bundle sheath by drought, osmotic stress, and abscisic acid. The stress-induced gene expression and chloroplast localization of ZmBAM8 align with the tissue and subcellular sites where TS turnover occurs. The recombinant ZmBAM8 was capable of effectively hydrolyzing leaf starch. Under drought conditions, the leaf starch in ZmBAM8-OE plants substantially decreased under light, while that in ZmBAM8-KO plants did not decrease. Compared with ZmBAM8-KO plants, ZmBAM8-OE plants exhibited increased drought tolerance. Our study provides insights into the significance of leaf starch degradation in C4 crops and contributes to the development of drought-resistant maize.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Folhas de Planta , Amido , Zea mays , beta-Amilase , Zea mays/genética , Zea mays/metabolismo , Zea mays/enzimologia , Amido/metabolismo , beta-Amilase/metabolismo , beta-Amilase/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ácido Abscísico/metabolismo , Estresse Fisiológico , Pressão Osmótica , Cloroplastos/metabolismo , Resistência à Seca
2.
Physiol Plant ; 176(5): e14500, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39221482

RESUMO

Angelica sinensis, a traditional Chinese medicinal plant, has been primarily reported due to its nutritional value. Pigmentation in this plant is an important appearance trait that directly affects its commercial value. To understand the mechanism controlling purpleness in A. sinensis, hormonal and transcriptomic analyses were performed in three different tissues (leave, root and stem), using two cultivars with contrasting colors. The two-dimensional data set provides dynamic hormonal and gene expression networks underpinning purpleness in A. sinensis. We found abscisic acid as a crucial hormone modulating anthocyanin biosynthesis in A. sinensis. We further identified and validated 7 key genes involved in the anthocyanin biosynthesis pathway and found a specific module containing ANS as a hub gene in WGCNA. Overexpression of a candidate pigment regulatory gene, AsANS (AS08G02092), in transgenic calli of A. sinensis resulted in increased anthocyanin production and caused purpleness. Together, these analyses provide an important understanding of the molecular networks underlying A. sinensis anthocyanin production and its correlation with plant hormones, which can provide an important source for breeding.


Assuntos
Angelica sinensis , Antocianinas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas , Proteínas de Plantas , Angelica sinensis/genética , Angelica sinensis/metabolismo , Antocianinas/biossíntese , Antocianinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética , Pigmentação/genética , Ácido Abscísico/metabolismo , Pigmentos Biológicos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
3.
Physiol Plant ; 176(5): e14513, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39262029

RESUMO

Pathogenesis-related proteins (PR), including osmotins, play a vital role in plant defense, being activated in response to diverse biotic and abiotic stresses. Despite their significance, the mechanistic insights into the role of osmotins in plant defense have not been extensively explored. The present study explores the cloning and characterization of the osmotin gene (WsOsm) from Withania somnifera, aiming to illuminate its role in plant defense mechanisms. Quantitative real-time PCR analysis revealed significant induction of WsOsm in response to various phytohormones e.g. abscisic acid, salicylic acid, methyl jasmonate, brassinosteroids, and ethrel, as well as biotic and abiotic stresses like heat, cold, salt, and drought. To further elucidate WsOsm's functional role, we overexpressed the gene in Nicotiana tabacum, resulting in heightened resistance against the Alternaria solani pathogen. Additionally, we observed enhancements in shoot length, root length, and root biomass in the transgenic tobacco plants compared to wild plants. Notably, the WsOsm- overexpressing seedlings demonstrated improved salt and drought stress tolerance, particularly at the seedling stage. Confocal histological analysis of H2O2 and biochemical studies of antioxidant enzyme activities revealed higher levels in the WsOsm overexpressing lines, indicating enhanced antioxidant defense. Furthermore, a pull-down assay and mass spectrometry analysis revealed a potential interaction between WsOsm and defensin, a known antifungal PR protein (WsDF). This suggests a novel role of WsOsm in mediating plant defense responses by interacting with other PR proteins. Overall, these findings pave the way for potential future applications of WsOsm in developing stress-tolerant crops and improving plant defense strategies against pathogens.


Assuntos
Defensinas , Regulação da Expressão Gênica de Plantas , Nicotiana , Proteínas de Plantas , Plantas Geneticamente Modificadas , Estresse Fisiológico , Withania , Withania/genética , Withania/fisiologia , Withania/metabolismo , Withania/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/fisiologia , Nicotiana/efeitos dos fármacos , Nicotiana/microbiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico/genética , Defensinas/genética , Defensinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Alternaria/fisiologia , Secas , Plântula/genética , Plântula/fisiologia , Plântula/efeitos dos fármacos , Ácido Salicílico/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Peróxido de Hidrogênio/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia
4.
Physiol Plant ; 176(5): e14524, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39266459

RESUMO

The yield of Tartary buckwheat is significantly affected by continuous cropping. Melatonin plays a crucial role in plant defense mechanisms against abiotic stresses. However, the relationship between melatonin and continuous cropping tolerance remains unclear. This study aimed to analyze the physiological mechanism of melatonin in enhancing the continuous cropping tolerance (abiotic stress) of Tartary buckwheat. A field experiment was conducted on Tartary buckwheat cultivar Jinqiao 2 under continuous cropping with five melatonin application rates, 0 (Control), 10, 50, 100, and 200 µmol L-1, applied during the early budding stage. The chlorophyll content, antioxidant enzyme activity, osmolyte and auxin (IAA) contents, root activity, rhizosphere soil nutrient content, and agronomic traits of Tartary buckwheat initially increased and then decreased with an increase in the concentration of exogenous melatonin application, with the best effects observed at 100 µmol L-1. Compared with the Control treatment, the 100 µmol L-1 treatment decreased the contents of malondialdehyde, superoxide anion free radical, and abscisic acid (ABA) by an average of 28.79%, 27.08%, and 31.64%, respectively. Exogenous melatonin treatment significantly increased the yield of Tartary buckwheat under continuous cropping. Plants treated with 10, 50, 100, and 200 µM respectively had 1.88, 2.01, 2.20, and 1.78 times higher yield than those of the Control treatment. In summary, melatonin treatment, particularly 100 µmol L-1, enhanced the continuous cropping tolerance of Tartary buckwheat by increasing antioxidant capacity and osmotica content, coordinating endogenous ABA and IAA content levels, and delaying senescence, ultimately increasing yield.


Assuntos
Antioxidantes , Fagopyrum , Melatonina , Fagopyrum/efeitos dos fármacos , Fagopyrum/metabolismo , Fagopyrum/crescimento & desenvolvimento , Fagopyrum/fisiologia , Melatonina/farmacologia , Melatonina/metabolismo , Antioxidantes/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Clorofila/metabolismo , Ácidos Indolacéticos/metabolismo , Malondialdeído/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento
5.
Yi Chuan ; 46(9): 737-749, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39275873

RESUMO

Rapeseed is one important oil crop in China. However, its planting benefit is frequently affected by environmental stresses such as drought in the northwest region of China. The abscisic acid(ABA) signaling pathway plays an important role in plant abiotic stress response and tolerance, and ABFs/AREBs(ABA-responsive element binding factors/ABA-responsive element binding proteins) are the core transcription factors that regulate the expression of ABA-responsive genes. To dissect the key transcription factors mediated abiotic stress, we mainly characterized abscisic acid insensitive 5(BnaABI5) in rapeseed, including its subcellular localization, expression pattern in response to various stress and tissue-specific expression analysis, transcriptional activity analysis as well as interaction screening with BnaMPKs(mitogen-activated protein kinases). Our results showed that the BnaABI5-GFP fusion protein was localized in the nucleus, and its transcript level is induced by drought stress and was mainly expressed in the roots of rapeseed. Furthermore, BnaABI5 showed transcriptional activation activity through a yeast transactivation assay and it also activated the promoter activity of EM6 target gene in the transient expression system in tobacco leaves. Moreover, BnaABI5 interacted with BnaMPK6 and BnaMPK13 through BiFC and Y2H analysis. This study preliminarily explored the expression characteristics of transcription factor BnaABI5 and its interaction with BnaMPKs, which might help us for further understanding the function of BnaABI5.


Assuntos
Brassica napus , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fatores de Transcrição , Brassica napus/genética , Brassica napus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Fisiológico/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia
6.
BMC Genomics ; 25(1): 887, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304819

RESUMO

Camellia oleifera is an important woody oil tree in China, in which the flowers and fruits appear during the same period. The endogenous hormone changes and transcription expression levels in different parts of the flower tissue (sepals, petals, stamens, and pistils), flower buds, leaves, and seeds of Changlin 23 high-yield (H), Changlin low-yield (L), and control (CK) C. oleifera groups were studied. The abscisic acid (ABA) content in the petals and stamens in the L group was significantly higher than that in the H and CK groups, which may be related to flower and fruit drops. The high N6-isopentenyladenine (iP) and indole acetic acid (IAA) contents in the flower buds may be associated with a high yield. Comparative transcriptome analysis showed that the protein phosphatase 2C (PP2C), jasmonate-zim-domain protein (JAZ), and WRKY-related differentially expressed genes (DEGs) may play an important role in determining leaf color. Gene set enrichment analysis (GSEA) comparison showed that jasmonic acid (JA) and cytokinin play an important role in determining the pistil of the H group. In this study, endogenous hormone and transcriptome analyses were carried out to identify the factors influencing the large yield difference in C. oleifera in the same year, which provides a theoretical basis for C. oleifera in the future.


Assuntos
Camellia , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas , Transcriptoma , Camellia/genética , Camellia/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Flores/genética , Flores/metabolismo , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo
7.
Plant Mol Biol ; 114(5): 101, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312030

RESUMO

Histone deacetylation, one of most important types of post-translational modification, plays multiple indispensable roles in plant growth and development and abiotic stress responses. However, little information about the roles of histone deacetylase in regulating inflorescence architecture, fruit yield, and stress responses is available in tomato. Functional characterization revealed that SlHDT1 participated in the control of inflorescence architecture and fruit yield by regulating auxin signalling, and influenced tolerance to drought and salt stresses by governing abscisic acid (ABA) signalling. More inflorescence branches and higher fruit yield, which were influenced by auxin signalling, were observed in SlHDT1-RNAi transgenic plants. Moreover, tolerance to drought and salt stresses was decreased in SlHDT1-RNAi transgenic lines compared with the wild type (WT). Changes in parameters related to the stress response, including decreases in survival rate, chlorophyll content, relative water content (RWC), proline content, catalase (CAT) activity and ABA content and an increase in malonaldehyde (MDA) content, were observed in SlHDT1-RNAi transgenic lines. In addition, the RNA-seq analysis revealed varying degrees of downregulation for genes such as the stress-related genes SlABCC10 and SlGAME6 and the pathogenesis-related protein P450 gene SlCYP71A1, and upregulation of the pathogenesis-related protein P450 genes SlCYP94B1, SlCYP734A7 and SlCYP94A2 in SlHDT1-RNAi transgenic plants, indicating that SlHDT1 plays an important role in the response to biotic and abiotic stresses by mediating stress-related gene expression. In summary, the data suggest that SlHDT1 plays essential roles in the regulation of inflorescence architecture and fruit yield and in the response to drought and salt stresses.


Assuntos
Ácido Abscísico , Secas , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Tolerância ao Sal , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Tolerância ao Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Estresse Fisiológico/genética , Ácidos Indolacéticos/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo
8.
Int J Mol Sci ; 25(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39273626

RESUMO

The action of abscisic acid (ABA) is closely related to its level in plant tissues. Uridine diphosphate-glycosyltransferase71c5 (UGT71C5) was characterized as a major UGT enzyme to catalyze the formation of the ABA-glucose ester (ABA-GE), a reversible inactive form of free ABA in Arabidopsis thaliana (thale cress). UGTs function in a mode where the catalytic base deprotonates an acceptor to allow a nucleophilic attack at the anomeric center of the donor, achieving the transfer of a glucose moiety. The proteomic data revealed that UGT71C5 can be persulfidated. Herein, an experimental method was employed to detect the persulfidation site of UGT71C5, and the computational methods were further used to identify the yet unknown molecular basis of ABA glycosylation as well as the regulatory role of persulfidation in this process. Our results suggest that the linker and the U-shaped loop are regulatory structural elements: the linker is associated with the binding of uridine diphosphate glucose (UPG) and the U-shaped loop is involved in binding both UPG and ABA.It was also found that it is through tuning the dynamics of the U-shaped loop that is accompanied by the movement of tyrosine (Y388) that the persulfidation of cysteine (C311) leads to the catalytic residue histidine (H16) being in place, preparing for the deprotonation of ABA, and then reorientates UPG and deprotonated ABA closer to the 'Michaelis' complex, facilitating the transfer of a glucose moiety. Ultimately, the persulfidation of UGT71C5 is in favor of ABA glycosylation. Our results provide insights into the molecular details of UGT71C5 recognizing substrates and insights concerning persulfidation as a possible mechanism for hydrogen sulfide (H2S) to modulate the content of ABA, which helps us understand how modulating ABA level strengthens plant tolerance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Glicosiltransferases , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Glicosilação , Glicosiltransferases/metabolismo , Glicosiltransferases/química , Simulação de Dinâmica Molecular , Uridina Difosfato Glucose/metabolismo , Uridina Difosfato Glucose/química
9.
BMC Plant Biol ; 24(1): 881, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342102

RESUMO

BACKGROUND: Larch is an important timber tree species. The traditional methods of tree genetic breeding have been progressing slowly. It is necessary to carry out gene function analysis and genetically modified breeding research. The NAC transcription factor family is a plant-specific transcription factor family with various biological functions, as shown in recent research. However, there are few studies on the NAC gene among gymnosperm coniferous species. RESULTS: LoNAC3 with complete cds was identified and isolated from the cDNA of Larix olgensis based on transcriptome data. The cDNA length of LoNAC3 is 1185 bp, encoding 394 amino acids, with a conserved NAM domain located at the N-terminus, and subcellular localization in the nucleus. The results of real-time quantitative PCR analysis showed that at different growth stages and in different tissues of L. olgensis, the relative expression level of LoNAC3 was highest in the needles. After drought, salt, alkali stress and hormone treatment, expression was induced to different degrees. The expression level of LoNAC3 was significantly increased under drought and salt conditions. The relative expression level changed under methyl jasmonate (MeJA) and abscisic acid (ABA) treatment. By observing the phenotype of overexpressed LoNAC3 tobacco, it was found that overexpressed tobacco is shorter and blooms earlier than wild-type tobacco. Under abiotic stress, LoNAC3 overexpressed tobacco has lower germination rates and poorer growth status. Transgenic tobacco under stress treatment has a higher malondialdehyde (MDA) content than wild-type tobacco, while peroxidase (POD) activity is lower than wild-type tobacco. CONCLUSIONS: Through the analysis of LoNAC3 sequence and promoter expression, it can be concluded that LoNAC3 is involved in the drought and salt stress response processes of L. olgensis, and is induced by ABA and MeJA expression. Overexpression of LoNAC3 leads to stunted tobacco growth and negatively regulates its tolerance to drought and salt stress through the reactive oxygen species pathway. The preliminary analysis of the expression pattern and function of the LoNAC3 can provide a theoretical basis and high-quality materials for genetic improvement of larch in later stages.


Assuntos
Larix , Proteínas de Plantas , Fatores de Transcrição , Larix/genética , Larix/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Nicotiana/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Filogenia , Ácido Abscísico/metabolismo , Secas , Genes de Plantas , Acetatos , Ciclopentanos , Oxilipinas
10.
Physiol Plant ; 176(5): e14534, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39284733

RESUMO

Bilberry (Vaccinium myrtillus L.) is a wild berry species that is prevalent in northern Europe. It is renowned and well-documented for its nutritional and bioactive properties, especially due to its anthocyanin content. However, an overview of biological systems governing changes in other crucial quality traits, such as size, firmness, and flavours, has received less attention. In the present study, we investigated detailed metabolomic and proteomic profiles at four different ripening stages of bilberry to provide a comprehensive understanding of overall quality during fruit ripening. By integrating omics datasets, we revealed a novel global regulatory network of plant hormones and physiological processes occurring during bilberry ripening. Key physiological processes, such as energy and primary metabolism, strongly correlate with elevated levels of gibberellic acids, jasmonic acid, and salicylic acid in unripe fruits. In contrast, as the fruit ripened, processes including flavour formation, cell wall modification, seed storage, and secondary metabolism became more prominent, and these were associated with increased abscisic acid levels. An indication of the increase in ethylene biosynthesis was detected during bilberry development, raising questions about the classification of non-climacteric and climacteric fruits. Our findings extend the current knowledge on the physiological and biochemical processes occurring during fruit ripening, which can serve as a baseline for studies on both wild and commercially grown berry species. Furthermore, our data may facilitate the optimization of storage conditions and breeding programs, as well as the future exploration of beneficial compounds in berries for new applications in food, cosmetics, and medicines.


Assuntos
Frutas , Metabolômica , Reguladores de Crescimento de Plantas , Proteômica , Vaccinium myrtillus , Frutas/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Proteômica/métodos , Reguladores de Crescimento de Plantas/metabolismo , Vaccinium myrtillus/metabolismo , Vaccinium myrtillus/genética , Vaccinium myrtillus/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Oxilipinas/metabolismo , Etilenos/metabolismo , Ácido Abscísico/metabolismo , Ciclopentanos/metabolismo , Giberelinas/metabolismo , Ácido Salicílico/metabolismo
11.
BMC Plant Biol ; 24(1): 865, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285359

RESUMO

This research was conducted to investigate the efficacy of putrescine (PUT) treatment (0, 1, 2, and 4 mM) on improving morphophysiological and biochemical characteristics of Zinnia elegans "State Fair" flowers under salt stress (0, 50, and 100 mM NaCl). The experiment was designed in a factorial setting under completely randomized design with 4 replications. The results showed that by increasing the salt stress intensity, the stress index (SSI) increased while morphological traits such as plant height decreased. PUT treatments effectively recovered the decrease in plant height and flower quality compared to the not-treated plants. Treatment by PUT 2 mM under 50 and 100 mM salt stress levels reduced the SSI by 28 and 35%, respectively, and increased plant height by 20 and 27% compared to untreated plants (PUT 0 mM). 2 mM PUT treatment also had the greatest effect on increasing fresh and dry biomass, number and surface area of leaves, flower diameter, internodal length, leaf relative water content, protein contents, total chlorophyll contents, carotenoids, leaf potassium (K+) content, and K+/Na+ ratio in treated plants compared to untreated control plants. The treatment of 2 mM PUT decreased the electrolyte leakage, leaf sodium (Na+) content, H2O2, malondialdehyde, and proline content. Furthermore, PUT treatments increased the activity of defense-related enzymes including catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and phenylalanine ammonium lyase (PAL), and reduced the abscisic acid (ABA) content while increased the level of gibberellin (GA) content compared to untreated samples under all different levels of salinity stress. In this research, enhancing the plant's antioxidant system, increasing K+ absorption, K+/Na+ ratio, and reducing the ABA/GA ratio are likely the most important mechanisms of PUT treatment, which improved growth, and maintained the visual quality of zinnia flowers under salt stress conditions.


Assuntos
Ácido Abscísico , Antioxidantes , Flores , Giberelinas , Estresse Oxidativo , Potássio , Putrescina , Estresse Salino , Ácido Abscísico/metabolismo , Potássio/metabolismo , Giberelinas/metabolismo , Antioxidantes/metabolismo , Putrescina/metabolismo , Flores/efeitos dos fármacos , Flores/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Salino/efeitos dos fármacos , Tolerância ao Sal/efeitos dos fármacos
12.
Genes (Basel) ; 15(9)2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39336770

RESUMO

Fertilization significantly affects the growth and development of wheat. However, the precise mechanisms underlying gene regulation during flowering in response to fertilization deficiency remain elusive. In this study, fertilization (F) and non-fertilization (CK) ) treatments were set up to reveal examine the effect of fertilization on the photosynthetic capacity of winter wheat during the flowering period through physiological, biochemical, and transcriptome analyses. Upon analyzing analysing their yield, leaf photosynthetic system exchange parameters during flowering, antioxidant enzyme activity, and endogenous hormone parameters, we found that the F treatment resulted in higher net photosynthetic rates during flowering periods than the CK treatment. The superoxide dismutase (SOD) (83.92%), peroxidase (POD) (150.75%), and catalase (CAT) (22.74%) activities of leaves in treated with F during the flowering period were notably elevated compared to those of CK-treated leaves. Abscisic acid (ABA) (1.86%) and gibberellin acid (GA3) (33.69%) levels were reduced, whereas Auxin auxin (IAA) (98.27%) content was increasedwas increased under F treatment compared to those the results under the CK treatment. The chlorophyll a (32.53%), chlorophyll b (56%), total chlorophyll (37.96%), and carotenoid contents (29.80%) under F treatment were also increased compared to CK., exceeded exceeding those obtained under the CK treatment. Furthermore, transcriptional differences between the F and CK conditions were analyzed, and key genes were screened and validated by using q-PCR. Transcriptome analysis identified 2281 differentially expressed genes (DEGs), with enriched pathways related to photosynthesis and light harvesting. DEGs were subjected to cluster simulation, which revealed that 53 DEGS, both up- and down-regulated, responded to the F treatment. qRT-PCR-based validation confirmed the differential expression of genes associated with carbohydrate transport and metabolism, lipid transport, and signal transduction. This study revealed distinctive transcriptional patterns and crucial gene regulation networks in wheat during flowering under fertilization, providing transcriptomic guidance for the precise regulation of wheat breeding.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Fotossíntese , Folhas de Planta , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Fotossíntese/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Ácido Abscísico/metabolismo , Transcriptoma , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Clorofila/metabolismo , Giberelinas/metabolismo , Fertilizantes , Ácidos Indolacéticos/metabolismo
13.
Int J Mol Sci ; 25(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39337346

RESUMO

Long non-coding RNAs (lncRNAs), a class of important regulatory factors for many biological processes in plants, have received much attention in recent years. To explore the molecular roles of lncRNAs in sweet cherry fruit ripening, we conducted widely targeted metabolome, transcriptome and lncRNA analyses of sweet cherry fruit at three ripening stages (yellow stage, pink stage, and dark red stage). The results show that the ripening of sweet cherry fruit involves substantial metabolic changes, and the rapid accumulation of anthocyanins (cyanidin 3-rutinoside, cyanidin 3-O-galactoside, and cyanidin 3-O-glucoside) is the main cause of fruit coloration. These ripening-related alterations in the metabolic profile are driven by specific enzyme genes related to the synthesis and decomposition of abscisic acid (ABA), cell wall disintegration, and anthocyanin biosynthesis, as well as transcription factor genes, such as MYBs, bHLHs, and WD40s. LncRNAs can target these ripening-related genes to form regulatory modules, incorporated into the sweet cherry fruit ripening regulatory network. Our study reveals that the lncRNA-mRNA module is an important component of the sweet cherry fruit ripening regulatory network. During sweet cherry fruit ripening, the differential expression of lncRNAs will meditate the spatio-temporal specific expression of ripening-related target genes (encoding enzymes and transcription factors related to ABA metabolism, cell wall metabolism and anthocyanin metabolism), thus driving fruit ripening.


Assuntos
Antocianinas , Frutas , Regulação da Expressão Gênica de Plantas , Metaboloma , Prunus avium , RNA Longo não Codificante , Transcriptoma , Frutas/genética , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Antocianinas/biossíntese , Antocianinas/metabolismo , Prunus avium/genética , Prunus avium/metabolismo , Prunus avium/crescimento & desenvolvimento , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ácido Abscísico/metabolismo , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Redes Reguladoras de Genes , Galactosídeos
14.
PeerJ ; 12: e18130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39329139

RESUMO

The codling moth (Cydia pomonella) has a major effect on the quality and yield of walnut fruit. Plant defences respond to insect infestation by activating hormonal signalling and the flavonoid biosynthetic pathway. However, little is known about the role of walnut husk hormones and flavonoid biosynthesis in response to C. pomonella infestation. The phytohormone content assay revealed that the contents of salicylic acid (SA), abscisic acid (ABA), jasmonic acid (JA), jasmonic acid-isoleucine conjugate (JA-ILE), jasmonic acid-valine (JA-Val) and methyl jasmonate (MeJA) increased after feeding at different time points (0, 12, 24, 36, 48, and 72 h) of walnut husk. RNA-seq analysis of walnut husks following C. pomonella feeding revealed a temporal pattern in differentially expressed genes (DEGs), with the number increasing from 3,988 at 12 h to 5,929 at 72 h postfeeding compared with the control at 0 h postfeeding. Walnut husks exhibited significant upregulation of genes involved in various defence pathways, including flavonoid biosynthesis (PAL, CYP73A, 4CL, CHS, CHI, F3H, ANS, and LAR), SA (PAL), ABA (ZEP and ABA2), and JA (AOS, AOC, OPR, JAZ, and MYC2) pathways. Three gene coexpression networks that had a significant positive association with these hormonal changes were constructed based on the basis of weighted gene coexpression network analysis (WGCNA). We identified several hub transcription factors, including the turquoise module (AIL6, MYB4, PRE6, WRKY71, WRKY31, ERF003, and WRKY75), the green module (bHLH79, PCL1, APRR5, ABI5, and ILR3), and the magenta module (ERF27, bHLH35, bHLH18, TIFY5A, WRKY31, and MYB44). Taken together, these findings provide useful genetic resources for exploring the defence response mediated by phytohormones in walnut husks.


Assuntos
Regulação da Expressão Gênica de Plantas , Juglans , Mariposas , Reguladores de Crescimento de Plantas , Transcriptoma , Juglans/genética , Reguladores de Crescimento de Plantas/metabolismo , Animais , Mariposas/genética , Mariposas/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Ácido Abscísico/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Flavonoides/metabolismo , Flavonoides/biossíntese , Acetatos
15.
Int J Mol Sci ; 25(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39337579

RESUMO

Ascorbic acid (AsA), an essential non-enzymatic antioxidant in plants, regulates development growth and responses to abiotic and biotic stresses. However, research on AsA's role in cold tolerance remains largely unknown. Here, our study uncovered the positive role of AsA in improving cold stress tolerance in tomato seedlings. Physiological analysis showed that AsA significantly enhanced the enzyme activity of the antioxidant defense system in tomato seedling leaves and increased the contents of proline, sugar, abscisic acid (ABA), and endogenous AsA. In addition, we found that AsA is able to protect the photosynthetic system of tomato seedlings, thereby relieving the declining rate of chlorophyll fluorescence parameters. qRT-PCR analysis indicated that AsA significantly increased the expression of genes encoding antioxidant enzymes and involved in AsA synthesis, ABA biosynthesis/signal transduction, and low-temperature responses in tomato. In conclusion, the application of exogenous AsA enhances cold stress tolerance in tomato seedlings through various molecular and physiological responses. This provides a theoretical foundation for exploring the regulatory mechanisms underlying cold tolerance in tomato and offers practical guidance for enhancing cold tolerance in tomato cultivation.


Assuntos
Ácido Ascórbico , Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Plântula , Solanum lycopersicum , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Ácido Ascórbico/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Temperatura Baixa , Antioxidantes/metabolismo , Clorofila/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
16.
Int J Mol Sci ; 25(18)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39337692

RESUMO

Basic leucine zipper (bZIP) transcription factors (TFs) play a crucial role in anthocyanin accumulation in plants. In addition to bZIP TFs, abscisic acid (ABA) increases anthocyanin biosynthesis. Therefore, this study aimed to investigate whether bZIP TFs are involved in ABA-induced anthocyanin accumulation in sweet cherry and elucidate the underlying molecular mechanisms. Specifically, the BLAST method was used to identify bZIP genes in sweet cherry. Additionally, we examined the expression of ABA- and anthocyanin-related genes in sweet cherry following the overexpression or knockdown of a bZIP candidate gene. In total, we identified 54 bZIP-encoding genes in the sweet cherry genome. Basic leucine zipper 6 (bZIP6) showed significantly increased expression, along with increased anthocyanin accumulation in sweet cherry. Additionally, yeast one-hybrid and dual-luciferase assays indicated that PavbZIP6 enhanced the expression of anthocyanin biosynthetic genes (PavDFR, PavANS, and PavUFGT), thereby increasing anthocyanin accumulation. Moreover, PavbZIP6 interacted directly with the PavBBX6 promoter, thereby regulating PavNCED1 to promote abscisic acid (ABA) synthesis and enhance anthocyanin accumulation in sweet cherry fruit. Conclusively, this study reveals a novel mechanism by which PavbZIP6 mediates anthocyanin biosynthesis in response to ABA and contributes to our understanding of the mechanism of bZIP genes in the regulation of anthocyanin biosynthesis in sweet cherry.


Assuntos
Ácido Abscísico , Antocianinas , Fatores de Transcrição de Zíper de Leucina Básica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Prunus avium , Antocianinas/metabolismo , Antocianinas/biossíntese , Ácido Abscísico/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Prunus avium/genética , Prunus avium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Frutas/metabolismo , Frutas/genética
17.
Ecotoxicol Environ Saf ; 284: 116991, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39236657

RESUMO

Myricaria laxiflora is an endangered shrub plant with remarkable tolerance to waterlogging stress, however, little attention has been paid to understanding the underlying mechanisms. Here, physiological and transcriptomic approaches were applied to uncover the physiological and molecular reconfigurations in the stem of M. laxiflora in response to waterlogging stress. The accumulation of the contents of H2O2 and malonaldehyde (MDA) alongside increased activities of enzymes for scavenging the reactive oxygen species (ROS) in the stem of M. laxiflora were observed under waterlogging stress. The principal component analysis (PCA) of transcriptomes from five different timepoints uncovered PC1 counted for 17.3 % of total variations and separated the treated and non-treated samples. A total of 8714 genes in the stem of M. laxiflora were identified as differentially expressed genes (DEGs) under waterlogging stress, which could be assigned into two different subgroups with distinct gene expression patterns and biological functions. The DEGs involved in glycolysis were generally upregulated, whereas opposite results were observed for nitrogen uptake and the assimilation pathway. The contents of abscisic acid (ABA) and jasmonic acid (JA) were sharply decreased alongside the decreased mRNA levels of the genes involved in corresponding synthesis pathways upon waterlogging stress. A network centered by eight key transcription factors has been constructed, which uncovered the inhibited cell division processes in the stem of M. laxiflora upon waterlogging stress. Taken together, the obtained results showed that glycolysis, nitrogen metabolism and meristem activities played an important role in the stem of M. laxiflora in response to waterlogging stress.


Assuntos
Estresse Fisiológico , Transcriptoma , Estresse Fisiológico/genética , Caules de Planta/genética , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ciclopentanos/metabolismo , Ácido Abscísico/metabolismo , Peróxido de Hidrogênio/metabolismo , Análise de Componente Principal , Malondialdeído/metabolismo
18.
Mol Biol Rep ; 51(1): 1025, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39340719

RESUMO

BACKGROUND: Hydroxynitrile lyases (HNLs) are a class of hydrolytic enzymes from a wide range of sources, which play crucial roles in the catalysis of the reversible conversion of carbonyl compounds derived from cyanide and free cyanide in cyanogenic plant species. HNLs were also discovered in non-cyanogenic plants, such as Arabidopsis thaliana, and their roles remain unclear even during plant growth and reproduction. METHODS AND RESULTS: The pattern of expression of the HNL in A. thaliana (AtHNL) in different tissues, as well as under abiotic stresses and hormone treatments, was examined by real-time quantitative reverse transcription PCR (qRT-PCR) and an AtHNL promoter-driven histochemical ß-glucuronidase (GUS) assay. AtHNL is highly expressed in flowers and siliques, and the expression of AtHNL was dramatically affected by abiotic stresses and hormone treatments. The overexpression of AtHNL resulted in transgenic A. thaliana seedlings that were more tolerance to mannitol and salinity. Moreover, transgenic lines of A. thaliana that overexpressed this gene were less sensitive to abscisic acid (ABA). Altered expression of ABA/stress responsive genes was also observed in hnl mutant and AtHNL-overexpressing plants, suggesting AtHNL may play functional roles on regulating Arabidopsis resistance to ABA and abiotic stresses by affecting ABA/stress responsive gene expression. In addition, the overexpression of AtHNL resulted in earlier flowering, whereas the AtHNL mutant flowered later than the wild type (WT) plants. The expression of the floral stimulators CONSTANS (CO), SUPPRESSOR OF OVER EXPRESSION OF CO 1 (SOC1) and FLOWERING LOCUS T (FT) was upregulated in plants that overexpressed AtHNL when compared with the WT plants. In contrast, expression of the floral repressor FLOWERING LOCUS C (FLC) was upregulated in AtHNL mutants and downregulated in plants that overexpressed AtHNL compared to the WT plants. CONCLUSION: This study revealed that AtHNL can be induced under abiotic stresses and ABA treatment, and genetic analysis showed that AtHNL could also act as a positive regulator of abiotic stress and ABA tolerance, as well as flowering time.


Assuntos
Ácido Abscísico , Aldeído Liases , Arabidopsis , Flores , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Estresse Fisiológico , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Flores/genética , Flores/crescimento & desenvolvimento , Estresse Fisiológico/genética , Aldeído Liases/genética , Aldeído Liases/metabolismo , Plantas Geneticamente Modificadas/genética , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento
19.
Int J Mol Sci ; 25(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39337250

RESUMO

Seed germination is a pivotal stage in the plant life cycle, orchestrated by a myriad of internal and external factors, notably plant hormones. The underlying molecular mechanisms governing rice seed germination remain largely unelucidated. Herein, we uncover OsMBF1a as a crucial regulatory factor that employs a dual strategy to promote seed germination: positively activating genes involved in gibberellin (GA) biosynthesis pathways, while negatively regulating key genes responsible for abscisic acid (ABA) synthesis. Furthermore, OsMBF1a modulates the endogenous levels of ABA and GA in rice seeds, reinforcing its central role in the germination process. The expression of ZmMBF1a and ZmMBF1b, the homologous genes in maize, in rice seeds similarly affects germination, indicating the conserved functionality of MBF1 family genes in regulating seed germination. This study provides novel insights into the molecular mechanisms underlying rice seed germination and underscores the significance of MBF1 family genes in plant growth and development.


Assuntos
Ácido Abscísico , Regulação da Expressão Gênica de Plantas , Germinação , Giberelinas , Oryza , Proteínas de Plantas , Sementes , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Giberelinas/metabolismo , Ácido Abscísico/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
20.
Nat Commun ; 15(1): 8077, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277642

RESUMO

Abscisic acid (ABA) is the primary preventing factor of seed germination, which is crucial to plant survival and propagation. ABA-induced seed germination inhibition is mainly mediated by the dimeric PYR/PYL/RCAR (PYLs) family members. However, little is known about the relevance between dimeric stability of PYLs and seed germination. Here, we reveal that stabilization of PYL dimer can relieve ABA-induced inhibition of seed germination using chemical genetic approaches. Di-nitrobensulfamide (DBSA), a computationally designed chemical probe, yields around ten-fold improvement in receptor affinity relative to ABA. DBSA reverses ABA-induced inhibition of seed germination mainly through dimeric receptors and recovers the expression of ABA-responsive genes. DBSA maintains PYR1 in dimeric state during protein oligomeric state experiment. X-ray crystallography shows that DBSA targets a pocket in PYL dimer interface and may stabilize PYL dimer by forming hydrogen networks. Our results illustrate the potential of PYL dimer stabilization in preventing ABA-induced seed germination inhibition.


Assuntos
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Germinação , Sementes , Germinação/efeitos dos fármacos , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Arabidopsis/genética , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Cristalografia por Raios X , Sulfonamidas/farmacologia , Sulfonamidas/química , Proteínas de Membrana Transportadoras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA