Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7472, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553547

RESUMO

Treacle ribosome biogenesis factor 1 (TCOF1) is responsible for about 80% of mandibular dysostosis (MD) cases. We have formerly identified a correlation between TCOF1 and CNBP (CCHC-type zinc finger nucleic acid binding protein) expression in human mesenchymal cells. Given the established role of CNBP in gene regulation during rostral development, we explored the potential for CNBP to modulate TCOF1 transcription. Computational analysis for CNBP binding sites (CNBP-BSs) in the TCOF1 promoter revealed several putative binding sites, two of which (Hs791 and Hs2160) overlap with putative G-quadruplex (G4) sequences (PQSs). We validated the folding of these PQSs measuring circular dichroism and fluorescence of appropriate synthetic oligonucleotides. In vitro studies confirmed binding of purified CNBP to the target PQSs (both folded as G4 and unfolded) with Kd values in the nM range. ChIP assays conducted in HeLa cells chromatin detected the CNBP binding to TCOF1 promoter. Transient transfections of HEK293 cells revealed that Hs2160 cloned upstream SV40 promoter increased transcription of downstream firefly luciferase reporter gene. We also detected a CNBP-BS and PQS (Dr2393) in the zebrafish TCOF1 orthologue promoter (nolc1). Disrupting this G4 in zebrafish embryos by microinjecting DNA antisense oligonucleotides complementary to Dr2393 reduced the transcription of nolc1 and recapitulated the craniofacial anomalies characteristic of Treacher Collins Syndrome. Both cnbp overexpression and Morpholino-mediated knockdown in zebrafish induced nolc1 transcription. These results suggest that CNBP modulates the transcriptional expression of TCOF1 through a mechanism involving G-quadruplex folding/unfolding, and that this regulation is active in vertebrates as distantly related as bony fish and humans. These findings may have implications for understanding and treating MD.


Assuntos
Quadruplex G , Disostose Mandibulofacial , Animais , Humanos , DNA/metabolismo , Células HEK293 , Células HeLa , Disostose Mandibulofacial/genética , Disostose Mandibulofacial/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
2.
Clin Transl Oncol ; 26(4): 924-935, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37821764

RESUMO

PURPOSE: Non-small cell lung cancer (NSCLC) is a complex disease that remains a major public health concern worldwide. One promising avenue for NSCLC treatment is the targeting of transcription factors that regulate key pathways involved in cancer progression. In this study, we investigated the role of the transcription factor ZNF263 in NSCLC and its impact on the regulation of IL33, apoptosis, and autophagy. METHODS: Levels of ZNF263 in tissues and cell lines were identified, after which the effects of its knockdown on cellular malignant behaviors, apoptosis and autophagy were assessed. Based on bioinformatics analysis, ZNF263 was found to bind to IL33 promoter, their mutual relationship was confirmed, as well as the role of IL33 in the regulation of ZNF263. The involvement of ZNF263 in the growth of xenograft tumors was assessed using tumor-bearing nude mouse models. RESULTS: Experimental results revealed that ZNF263 was upregulated in NSCLC tissue samples and cell lines. Its expression level is positively correlated with cellular malignant behaviors. We further demonstrated that ZNF263 upregulated IL33 expression, which, in turn, promoted the proliferation and migration, inhibited apoptosis and autophagy in NSCLC cells. Furthermore, ZNF263 knockdown reduced the growth of xenograft tumors in nude mice. CONCLUSION: This finding suggests that the inhibition of ZNF263 or IL33 may represent a novel therapeutic strategy for NSCLC. Importantly, our results highlight the crucial role of transcription factors in NSCLC and their potential as therapeutic targets.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proteínas de Ligação a DNA , Interleucina-33 , Neoplasias Pulmonares , MicroRNAs , Animais , Humanos , Camundongos , Apoptose , Autofagia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Interleucina-33/metabolismo , Interleucina-33/uso terapêutico , Neoplasias Pulmonares/patologia , Camundongos Nus , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo
3.
Cells ; 11(18)2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36139424

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant activation of the alveolar epithelium, the expansion of the fibroblast population, and the accumulation of extracellular matrix. Global gene expression of human lung fibroblasts stimulated with TGFß-1, a strong fibrotic mediator revealed the overexpression of ZNF365, a zinc finger protein implicated in cell cycle control and telomere stabilization. We evaluated the expression and localization of ZNF365 in IPF lungs and in the fibrotic response induced by bleomycin in WT and deficient mice of the orthologous gene Zfp365. In IPF, ZNF365 was overexpressed and localized in fibroblasts/myofibroblasts and alveolar epithelium. Bleomycin-induced lung fibrosis showed an upregulation of Zfp365 localized in lung epithelium and stromal cell populations. Zfp365 KO mice developed a significantly higher fibrotic response compared with WT mice by morphology and hydroxyproline content. Silencing ZNF365 in human lung fibroblasts and alveolar epithelial cells induced a significant reduction of growth rate and increased senescence markers, including Senescence Associated ß Galactosidase activity, p53, p21, and the histone variant γH2AX. Our findings demonstrate that ZNF365 is upregulated in IPF and experimental lung fibrosis and suggest a protective role since its absence increases experimental lung fibrosis mechanistically associated with the induction of cell senescence.


Assuntos
Proteínas de Ligação a DNA , Fibrose Pulmonar Idiopática , Fatores de Transcrição , Animais , Bleomicina/toxicidade , Senescência Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fibrose , Histonas , Humanos , Hidroxiprolina , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53 , beta-Galactosidase/metabolismo
4.
Genes (Basel) ; 12(2)2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672655

RESUMO

Some C2H2 zinc-finger proteins (ZFP) transcription factors are involved in the development of pollen in plants. In grapevine (Vitis vinifera L.), it has been suggested that abnormalities in pollen development lead to the phenomenon called parthenocarpy that occurs in some varieties of this cultivar. At present, a network involving several transcription factors types has been revealed and key roles have been assigned to members of the C2H2 zinc-finger proteins (ZFP) family in model plants. However, particularities of the regulatory mechanisms controlling pollen formation in grapevine remain unknown. In order to gain insight into the participation of ZFPs in grapevine gametophyte development, we performed a genome-wide identification and characterization of genes encoding ZFP (VviZFP family). A total of 98 genes were identified and renamed based on the gene distribution into grapevine genome. The analysis performed indicate significant changes throughout VviZFP genes evolution explained by high heterogeneity in sequence, length, number of ZF and presence of another conserved domains. Moreover, segmental duplication participated in the gene family expansion in grapevine. The VviZFPs were classified based on domain and phylogenetic analysis into three sets and different groups. Heat-map demonstrated differential and tissue-specific expression patterns of these genes and k-means clustering allowed to identify a group of putative orthologs to some ZFPs related to pollen development. In transgenic plants carrying the promVviZFP13::GUS and promVviZFP68::GUS constructs, GUS signals were detectable in the anther and mature pollen grains. Expression profiling of selected VviZFP genes showed differential expression pattern during flower development and provides a basis for deepening in the understanding of VviZFPs role on grapevine reproductive development.


Assuntos
Dedos de Zinco CYS2-HIS2/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Desenvolvimento Vegetal/genética , Pólen/genética , Vitis/fisiologia , Sequência de Aminoácidos , Sequência Conservada , Modelos Moleculares , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformação Proteica , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vitis/classificação
5.
Plant J ; 103(6): 2193-2210, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32579242

RESUMO

Potato (Solanum tuberosum L.) is one of the world's most important crops, but it is facing major challenges due to climatic changes. To investigate the effects of intermittent drought on the natural variability of plant morphology and tuber metabolism in a novel potato association panel comprising 258 varieties we performed an augmented block design field study under normal irrigation and under water-deficit and recovery conditions in Ica, Peru. All potato genotypes were profiled for 45 morphological traits and 42 central metabolites via nuclear magnetic resonance. Statistical tests and norm of reaction analysis revealed that the observed variations were trait specific, that is, genotypic versus environmental. Principal component analysis showed a separation of samples as a result of conditional changes. To explore the relational ties between morphological traits and metabolites, correlation-based network analysis was employed, constructing one network for normal irrigation and one network for water-recovery samples. Community detection and difference network analysis highlighted the differences between the two networks, revealing a significant correlational link between fumarate and plant vigor. A genome-wide association study was performed for each metabolic trait. Eleven single nucleotide polymorphism (SNP) markers were associated with fumarate. Gene Ontology analysis of quantitative trait loci regions associated with fumarate revealed an enrichment of genes regulating metabolic processes. Three of the 11 SNPs were located within genes, coding for a protein of unknown function, a RING domain protein and a zinc finger protein ZAT2. Our findings have important implications for future potato breeding regimes, especially in countries suffering from climate change.


Assuntos
Característica Quantitativa Herdável , Solanum tuberosum/metabolismo , Aminoácidos/metabolismo , Desidratação , Fumaratos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Estudo de Associação Genômica Ampla , Espectroscopia de Ressonância Magnética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Solanum tuberosum/anatomia & histologia , Solanum tuberosum/genética , Solanum tuberosum/fisiologia , Clima Tropical , Água/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-32154189

RESUMO

The regulation of gene expression in trypanosomatids occurs mainly at the post-transcriptional level. In the case of Trypanosoma cruzi, the characterization of messenger ribonucleoprotein (mRNP) particles has allowed the identification of several classes of RNA binding proteins (RBPs), as well as non-canonical RBPs, associated with mRNA molecules. The protein composition of the mRNPs as well as the localization and functionality of the mRNAs depend on their associated proteins. mRNPs can also be organized into larger complexes forming RNA granules, which function as stress granules or P-bodies depending on the associated proteins. The fate of mRNAs in the cell, and consequently the genes expressed, depends on the set of proteins associated with the messenger molecule. These proteins allow the coordinated expression of mRNAs encoding proteins that are related in function, resulting in the formation of post-transcriptional operons. However, the puzzle posed by the combinatorial association of sets of RBPs with mRNAs and how this relates to the expressed genes remain to be elucidated. One important tool in this endeavor is the use of the CRISPR/CAS system to delete genes encoding RBPs, allowing the evaluation of their effect on the formation of mRNP complexes and associated mRNAs in the different compartments of the translation machinery. Accordingly, we recently established this methodology for T. cruzi and deleted the genes encoding RBPs containing zinc finger domains. In this manuscript, we will discuss the data obtained and the potential of the CRISPR/CAS methodology to unveil the role of RBPs in T. cruzi gene expression regulation.


Assuntos
Trypanosoma cruzi , Regulação da Expressão Gênica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo
7.
Plant Biotechnol J ; 18(8): 1711-1721, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31930666

RESUMO

Increasing drought resistance without sacrificing grain yield remains an ongoing challenge in crop improvement. In this study, we report that Oryza sativa CCCH-tandem zinc finger protein 5 (OsTZF5) can confer drought resistance and increase grain yield in transgenic rice plants. Expression of OsTZF5 was induced by abscisic acid, dehydration and cold stress. Upon stress, OsTZF5-GFP localized to the cytoplasm and cytoplasmic foci. Transgenic rice plants overexpressing OsTZF5 under the constitutive maize ubiquitin promoter exhibited improved survival under drought but also growth retardation. By introducing OsTZF5 behind the stress-responsive OsNAC6 promoter in two commercial upland cultivars, Curinga and NERICA4, we obtained transgenic plants that showed no growth retardation. Moreover, these plants exhibited significantly increased grain yield compared to non-transgenic cultivars in different confined field drought environments. Physiological analysis indicated that OsTZF5 promoted both drought tolerance and drought avoidance. Collectively, our results provide strong evidence that OsTZF5 is a useful biotechnological tool to minimize yield losses in rice grown under drought conditions.


Assuntos
Oryza , Secas , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Zinco , Dedos de Zinco/genética
8.
Electron. j. biotechnol ; Electron. j. biotechnol;34: 76-82, july. 2018. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1047373

RESUMO

Background: Jatropha curcas L., as an important strategic biofuel resource with considerable economic potential, has attracted worldwide attention. However, J. curcas has yet to be domesticated. Plant height, an important agronomic trait of J. curcas, has not been sufficiently improved, and the genetic regulation of this trait in J. curcas is not fully understood. Zinc finger proteins (ZFPs), a class of transcription factors, have previously been shown to play critical roles in regulating multiple aspects of plant growth and development and may accordingly be implicated in the genetic regulation of plant height in J. curcas. Results: In this study, we cloned JcZFP8, a C2H2 ZFP gene in J. curcas. We found that the JcZFP8 protein was localized in the nucleus and contained a conserved QALGGH motif in its C2H2 structure. Furthermore, ectopic expression of JcZFP8 under the control of the 35S promoter in transgenic tobacco resulted in dwarf plants with malformed leaves. However, when JcZFP8 was knocked out, the transgenic tobacco did not show the dwarf phenotype. After treatment with the gibberellic acid (GA) biosynthesis inhibitor paclobutrazol (PAC), the dwarf phenotype was more severe than plants that did not receive the PAC treatment, whereas application of exogenous gibberellin3 (GA3) reduced the dwarf phenotype in transgenic plants. Conclusions: The results of this study indicate that JcZFP8 may play a role in J. curcas plant phenotype through GA-related pathways. Our findings may help us to understand the genetic regulation of plant development in J. curcas and to accelerate breeding progress through engineering of the GA metabolic pathway in this plant. How to cite: Shi X,Wu Y, Dai T, et al. JcZFP8, a C2H2 zinc-finger protein gene from Jatropha curcas, influences plant development in transgenic tobacco.


Assuntos
Nicotiana/genética , Jatropha , Desenvolvimento Vegetal , Dedos de Zinco CYS2-HIS2/genética , Reguladores de Crescimento de Plantas/genética , Fatores de Transcrição , Triazóis , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Reação em Cadeia da Polimerase em Tempo Real , Giberelinas
9.
Mol Biochem Parasitol ; 221: 1-9, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29409763

RESUMO

In the protozoan parasite Trypanosoma cruzi - the causative agent of Chagas disease - gene expression control is mainly post-transcriptional, where RNA-binding proteins (RBPs) play a central role, by controlling mRNA stability, distribution and translation. A large variety of RBPs are encoded in the T. cruzi genome, including the CCCH-type zinc finger (CCCH ZnF) protein family, which is characterized by the presence of the C-X7/8-C-X5-C-X3-H (CCCH) motif. In the related parasite T. brucei, CCCH ZnF proteins have been shown to control key differentiation steps in the parasite's life cycle. However, little is known about the CCCH ZnF proteins in T. cruzi. We have worked on the generation of T. cruzi mutants for CCCH ZnF proteins in an effort to shed light on the functions of these proteins in this parasite. Here, we characterize the expression and function of the CCCH ZnF protein TcZC3H31 of T. cruzi. TcZC3H31 is almost exclusively expressed in epimastigotes and metacyclic trypomastigotes, the parasite forms found in the invertebrate host. Importantly, we show that the epimastigote form of the T. cruzi knockout for the TcZC3H31 gene (TcZC3H31 KO) is incapable, both in vitro and in vivo (in infected triatomine insects), to differentiate into the metacyclic trypomastigote form, which is responsible for infection transmission from vectors to humans. The epimastigote forms recovered from the excreta of insects infected with TcZC3H31 KO parasites do not have the typical epimastigote morphology, suggesting that parasites are arrested in a mid-differentiation step. Also, epimastigotes overexpressing TcZC3H31 differentiate into metacyclics more efficiently than wild-type epimastigotes, in vitro. These data suggest that TcZC3H31 is an essential positive regulator of T. cruzi differentiation into the human-infective metacyclic form.


Assuntos
Proteínas de Protozoários/metabolismo , Proteínas de Ligação a RNA/metabolismo , Trypanosoma cruzi/citologia , Trypanosoma cruzi/crescimento & desenvolvimento , Dedos de Zinco , Animais , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Insetos , Proteínas de Protozoários/genética , Proteínas de Ligação a RNA/genética , Trypanosoma cruzi/genética
10.
Cell Rep ; 22(2): 523-534, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29320745

RESUMO

Liver-specific disruption of the type 2 deiodinase gene (Alb-D2KO) results in resistance to both diet-induced obesity and liver steatosis in mice. Here, we report that this is explained by an ∼60% reduction in liver zinc-finger protein-125 (Zfp125) expression. Zfp125 is a Foxo1-inducible transcriptional repressor that causes lipid accumulation in the AML12 mouse hepatic cell line and liver steatosis in mice by reducing liver secretion of triglycerides and hepatocyte efflux of cholesterol. Zfp125 acts by repressing 18 genes involved in lipoprotein structure, lipid binding, and transport. The ApoE promoter contains a functional Zfp125-binding element that is also present in 17 other lipid-related genes repressed by Zfp125. While liver-specific knockdown of Zfp125 causes an "Alb-D2KO-like" metabolic phenotype, liver-specific normalization of Zfp125 expression in Alb-D2KO mice rescues the phenotype, restoring normal susceptibility to diet-induced obesity, liver steatosis, and hypercholesterolemia.


Assuntos
Proteínas de Ligação a DNA/genética , Fígado Gorduroso/genética , Proteína Forkhead Box O1/genética , Hipercolesterolemia/genética , Animais , Proteínas de Ligação a DNA/metabolismo , Fígado Gorduroso/patologia , Proteína Forkhead Box O1/metabolismo , Camundongos
11.
Biometals ; 30(6): 861-872, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28993928

RESUMO

The zinc fingers proteins (ZNF) are the largest family of DNA binding proteins and can act as transcriptional factors in eukaryotes. ZNF are implicated in activation in response to environmental stimulus by biometals such as Zn2+. Many of these proteins have the classical C2H2 zinc finger motifs (C2H2-ZNFm) of approximately 30 amino acids, where a Zn2+ ion is coordinated by two cysteine and two histidine residues. Trichomonas vaginalis is a protozoan parasite than responds to environmental changes including Zn2+. Until now has not been described any ZNF that could be involved in the regulation of genic expression of T. vaginalis. Here, we characterized in silico and experimentally an annoted ZNF (TvZNF1) from T. vaginalis and isolated the gene, tvznf1 encoding it. TvZNF1 have eight C2H2-ZNFm with residues that maybe involved in the structural stability of DNA binding motifs. In this work we confirmed the Zn2+ upregulation expression of tvznf1 gene. Recombinant TvZNF1 was able to bind to specific DNA sequences according to EMSA assay. Additionally, we demonstrated that recombinant TvZNF1 bind to MRE signature in vitro, which strongly suggests its role in transcriptional regulation, similar to the one observed for mammalian MTF-1. This result suggested a conserved mechanism of genic regulation mediated by ZNFs in T. vaginalis.


Assuntos
Dedos de Zinco CYS2-HIS2 , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Trichomonas vaginalis/genética , Sítios de Ligação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Estrutura Secundária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Elementos de Resposta , Fatores de Transcrição/genética , Trichomonas vaginalis/química , Trichomonas vaginalis/metabolismo , Zinco/metabolismo
12.
Mem. Inst. Oswaldo Cruz ; 107(6): 790-799, set. 2012. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-649496

RESUMO

Trypanosomes are parasitic protozoa in which gene expression is primarily controlled through the regulation of mRNA stability and translation. This post-transcriptional control is mediated by various families of RNA-binding proteins, including those with zinc finger CCCH motifs. CCCH zinc finger proteins have been shown to be essential to differentiation events in trypanosomatid parasites. Here, we functionally characterise TcZFP2 as a predicted post-transcriptional regulator of differentiation in Trypanosoma cruzi. This protein was detected in cell culture-derived amastigotes and trypomastigotes, but it was present in smaller amounts in metacyclic trypomastigote forms of T. cruzi. We use an optimised recombinant RNA immunopreciptation followed by microarray analysis assay to identify TcZFP2 target mRNAs. We further demonstrate that TcZFP2 binds an A-rich sequence in which the adenosine residue repeats are essential for high-affinity recognition. An analysis of the expression profiles of the genes encoding the TcZFP2-associated mRNAs throughout the parasite life cycle by microarray hybridisation showed that most of the associated mRNAs were upregulated in the metacyclic trypomastigote forms, also suggesting a role for TcZFP2 in metacyclic trypomastigote differentiation. Knockdown of the orthologous Trypanosoma brucei protein levels showed ZFP2 to be a positive regulator of specific target mRNA abundance.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Protozoários/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Trypanosoma cruzi/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Estabilidade de RNA , Trypanosoma cruzi/crescimento & desenvolvimento
13.
Genet Mol Biol ; 32(3): 594-600, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21637524

RESUMO

ZNF230 is a novel zinc finger gene cloned by our laboratory. In order to understand the potential functions of this gene in vertebrate development, we cloned the zebrafish orthologue of human ZNF230, named rnf141. The cDNA fragment of rnf141 was obtained by rapid amplification of cDNA ends (RACE). The open reading frame (ORF) encodes a polypeptide of 222 amino acids which shares 75.65% identity with the human ZNF230. RT-PCR analysis in zebrafish embryo and adult tissues revealed that rnf141 transcripts are maternally derived and that rnf141 mRNA has a broad distribution. Zygotic rnf141 message is strongly localized in the central nervous system, as shown by whole-mount in situ hybridization. Knockdown and over expression of rnf141 can induce abnormal phenotypes, including abnormal development of brain, as well as yolk sac and axis extendsion. Marker gene analysis showed that rnf141 may play a role in normal dorsoventral patterning of zebrafish embryos, suggesting that rnf141 may have a broad function during early development of vertebrates.

14.
Genet. mol. biol ; Genet. mol. biol;32(3): 594-600, 2009. ilus, graf
Artigo em Inglês | LILACS | ID: lil-522322

RESUMO

ZNF230 is a novel zinc finger gene cloned by our laboratory. In order to understand the potential functions of this gene in vertebrate development, we cloned the zebrafish orthologue of human ZNF230, named rnf141. The cDNA fragment of rnf141 was obtained by rapid amplification of cDNA ends (RACE). The open reading frame (ORF) encodes a polypeptide of 222 amino acids which shares 75.65 percent identity with the human ZNF230. RT-PCR analysis in zebrafish embryo and adult tissues revealed that rnf141 transcripts are maternally derived and that rnf141 mRNA has a broad distribution. Zygotic rnf141 message is strongly localized in the central nervous system, as shown by whole-mount in situ hybridization. Knockdown and over expression of rnf141 can induce abnormal phenotypes, including abnormal development of brain, as well as yolk sac and axis extendsion. Marker gene analysis showed that rnf141 may play a role in normal dorsoventral patterning of zebrafish embryos, suggesting that rnf141 may have a broad function during early development of vertebrates.


Assuntos
Humanos , Animais , Clonagem Molecular , Peixe-Zebra/genética , Dedos de Zinco , Proteínas de Ligação a DNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA