Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 231(2): 878-891, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33864700

RESUMO

Mating system transitions from self-incompatibility (SI) to self-compatibility (SC) are common in plants. In the absence of high levels of inbreeding depression, SC alleles are predicted to spread due to transmission advantage and reproductive assurance. We characterized mating system and pistil-expressed SI factors in 20 populations of the wild tomato species Solanum habrochaites from the southern half of the species range. We found that a single SI to SC transition is fixed in populations south of the Rio Chillon valley in central Peru. In these populations, SC correlated with the presence of the hab-6 S-haplotype that encodes a low activity S-RNase protein. We identified a single population segregating for SI/SC and hab-6. Intrapopulation crosses showed that hab-6 typically acts in the expected codominant fashion to confer SC. However, we found one specific S-haplotype (hab-10) that consistently rejects pollen of the hab-6 haplotype, and results in SI hab-6/hab-10 heterozygotes. We suggest that the hab-10 haplotype could act as a genetic mechanism to stabilize mixed mating in this population by presenting a disadvantage for the hab-6 haplotype. This barrier may represent a mechanism allowing for the persistence of SI when an SC haplotype appears in or invades a population.


Assuntos
Autoincompatibilidade em Angiospermas , Solanum , Flores , Peru , Pólen/genética , Ribonucleases , Autoincompatibilidade em Angiospermas/genética
2.
Plants (Basel) ; 10(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922706

RESUMO

Conservation and sustainable use of species diversity require a description of the environment where they develop. The objectives were to determine ecological descriptors and climatic diversity of areas along the distribution range of 12 species of wild tomatoes (Solanum sect. Lycopersicon) and four wild species of phylogenetically related groups (Solanum sect. Juglandifolia and sect. Lycopersicoides), as well as their ecological similarity in Latin America. With 4228 selected tomato accessions and an environmental information system (EIS) composed of 21 climatic variables, diversity patterns of the distribution areas were identified for each species, as well as ecological descriptors through the use of geographic information systems (GIS). The contribution of climatic variables to the species geographical distribution was identified by principal component analysis (PCA), and similarity in species distribution as a function of the variables identified with cluster analysis (CA). Climatic characteristics and the environmental amplitude of wild tomatoes and related species along their distributional range were satisfactorily determined by ecological descriptors. Eleven climate types were identified, predominantly BSk (arid, steppe, cold), BWh (arid, desert, hot), and Cfb (temperate, no dry season, warm summer). PCA determined 10 most important variables were the most important for the geographical distribution. Six groups of species were identified according to CA and climatic distribution similarity. This approach has shown promissory applications for biodiversity conservation of valuable genetic resources for tomato crop breeding.

3.
Am J Bot ; 103(11): 1964-1978, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27864262

RESUMO

PREMISE OF THE STUDY: Interspecific reproductive barriers (IRBs) often prevent hybridization between closely related species in sympatry. In the tomato clade (Solanum section Lycopersicon), interspecific interactions between natural sympatric populations have not been evaluated previously. In this study, we assessed IRBs between members of the tomato clade from nine sympatric sites in Peru. METHODS: Coflowering was assessed at sympatric sites in Peru. Using previously collected seeds from sympatric sites in Peru, we evaluated premating prezygotic (floral morphology), postmating prezygotic (pollen-tube growth), and postzygotic barriers (fruit and seed development) between sympatric species in common gardens. Pollen-tube growth and seed development were examined in reciprocal crosses between sympatric species. KEY RESULTS: We confirmed coflowering of sympatric species at five sites in Peru. We found three types of postmating prezygotic IRBs during pollen-pistil interactions: (1) unilateral pollen-tube rejection between pistils of self-incompatible species and pollen of self-compatible species; (2) potential conspecific pollen precedence in a cross between two self-incompatible species; and (3) failure of pollen tubes to target ovules. In addition, we found strong postzygotic IRBs that prevented normal seed development in 11 interspecific crosses, resulting in seed-like structures containing globular embryos and aborted endosperm and, in some cases, overgrown endothelium. Viable seed and F1 hybrid plants were recovered from three of 19 interspecific crosses. CONCLUSIONS: We have identified diverse prezygotic and postzygotic IRBs that would prevent hybridization between sympatric wild tomato species, but interspecific hybridization is possible in a few cases.


Assuntos
Solanum/fisiologia , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Geografia , Hibridização Genética , Peru , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/fisiologia , Polinização , Reprodução , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Autoincompatibilidade em Angiospermas , Solanum/genética , Solanum/crescimento & desenvolvimento , Simpatria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA