Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Top Spinal Cord Inj Rehabil ; 28(4): 113-120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457356

RESUMO

Objectives: To assess the changes in speed, stroke frequency, acceleration, and shoulder range of motion (ROM) associated with different wheelchair axle positions in people with chronic C7 tetraplegia. Methods: This repeated-measures study was conducted at the Chronic Spinal Cord Injury Unit, FLENI Escobar, Argentina. The speed, stroke frequency, acceleration, and shoulder ROM during wheelchair propulsion were measured in nine participants with C7 spinal cord injury (SCI) in four different axle positions (forward and up, forward and down, backward and down, backward and up). Two strokes performed at maximum speed were analyzed on a smooth level vinyl floor in a motion analysis laboratory. Data were analyzed for significant statistical differences using the Friedman test and the Wilcoxon signed rank test. Results: Our study showed significant differences in the speed with axle position 1 (1.57 m/s) versus 2 (1.55 m/s) and position 2 (1.55 m/s) versus 4 (1.52 m/s). The shoulder ROM showed a significant difference in the sagittal plane in position 2 (59.34 degrees) versus 3 (61.64 degrees), whereas the stroke frequency and the acceleration parameters showed no statistically significant differences with the different rear axle positions. Conclusions: Our study showed that modifying the rear axle position can improve the propulsion speed and produce changes in the shoulder ROM in the wheelchair propulsion of individuals with C7 SCI.


Assuntos
Traumatismos da Medula Espinal , Cadeiras de Rodas , Humanos , Quadriplegia , Amplitude de Movimento Articular , Cloreto de Polivinila
2.
Top Spinal Cord Inj Rehabil ; 23(2): 168-173, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29339893

RESUMO

Background: Subjects with spinal cord injury (SCI) propel their wheelchairs by generating a different level of muscle activity given their multiple deficits in muscle strength. Exercise training programs seem to be effective in improving wheelchair propulsion capacity. Functional electrical stimulation (FES) therapy is a complementary tool for rehabilitation programs. Objectives: To determine the accuracy of the synchronization between the FES activation and the push phase of the propulsion cycle by using hand pressure sensors that allow anterior deltoids activation when the hand is in contact with the pushrim. Methods: We analyzed 2 subjects, with injuries at C6 American Spinal Injury Association Impairment Scale (AIS) A and T12 AIS A. The stimulation parameters were set for a 30 Hz frequency symmetrical biphasic wave, 300 µs pulse width. Data were collected as participants propelled the wheelchair over a 10-m section of smooth, level vinyl floor. Subjects were evaluated in a motion analysis laboratory (ELITE; BTS, Milan, Italy). Results: Subject 1 showed synchronization between the FES activation and the push phase of 87.5% in the left hand and of 80% in the right hand. Subject 2 showed synchronization of 95.1% in the left and of hand 94.9% in the right hand. Conclusion: Our study determined a high accuracy of a novel FES therapeutic option, showing the synchronization between the electrical stimulation and the push phase of the propulsion cycle.


Assuntos
Terapia por Estimulação Elétrica/métodos , Exercício Físico/fisiologia , Ombro/fisiopatologia , Traumatismos da Medula Espinal/reabilitação , Cadeiras de Rodas , Adulto , Humanos , Masculino , Traumatismos da Medula Espinal/fisiopatologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA