Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38668208

RESUMO

In this study, we analyzed the impact of hydroxyl and epoxy groups on the properties of graphene oxide (GO) for the adsorption of methylene blue (MB) dye from water, addressing the urgent need for effective water purification methods due to industrial pollution. Employing a dual approach, we integrated experimental techniques with theoretical modeling via density functional theory (DFT) to examine the atomic structure of GO and its adsorption capabilities. The methodology encompasses a series of experiments to evaluate the performance of GO in MB dye adsorption under different conditions, including differences in pH, dye concentration, reaction temperature, and contact time, providing a comprehensive view of its effectiveness. Theoretical DFT calculations provide insights into how hydroxyl and epoxy modifications alter the electronic properties of GO, improving adsorption efficiency. The results demonstrate a significant improvement in the dye adsorption capacity of GO, attributed to the interaction between the functional groups and MB molecules. This study not only confirms the potential of GO as a superior adsorbent for water treatment, but also contributes to the optimization of GO-based materials for environmental remediation, highlighting the synergy between experimental observations and theoretical predictions in advances in materials science to improve sustainability.

2.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673952

RESUMO

This study focuses on synthesizing and characterizing a graphene oxide/ZnTiO3/TiO2 (GO/ZTO/TO) composite to efficiently remove methylene blue (MB) from water, presenting a novel solution to address industrial dye pollution. GO and ZTO/TO were synthesized by the modified Hummers and sol-gel methods, respectively, while GO/ZTO/TO was prepared using a hydrothermal process. The structural and surface properties of the composite were characterized using various analytical techniques confirming the integration of the constituent materials and suitability for dye adsorption. The study revealed that GO/ZTO/TO exhibits an adsorption capacity of 78 mg g-1 for MB, with only a 15% reduction in adsorption efficiency until the fifth reuse cycle. Furthermore, the study suggests optimal adsorption near neutral pH and enhanced performance at elevated temperatures, indicating an endothermic reaction. The adsorption behavior fits the Langmuir isotherm, implying monolayer adsorption on homogeneous surfaces, and follows pseudo-second-order kinetics, highlighting chemical interactions at the surface as the rate-limiting step. The photocatalytic degradation of MB by GO/ZTO/TO follows pseudo-first-order kinetics, with a higher rate constant than that of GO alone, demonstrating the enhanced photocatalytic activity of the composite. In conclusion, GO/ZTO/TO emerges as a promising and sustainable approach for water purification, through an adsorption process and subsequent photocatalytic degradation.


Assuntos
Grafite , Azul de Metileno , Titânio , Poluentes Químicos da Água , Purificação da Água , Azul de Metileno/química , Azul de Metileno/isolamento & purificação , Titânio/química , Adsorção , Grafite/química , Catálise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Cinética , Processos Fotoquímicos , Concentração de Íons de Hidrogênio , Zinco/química
3.
Environ Sci Pollut Res Int ; 31(17): 25437-25453, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472573

RESUMO

2,4-Dichlorophenoxyacetic acid (2,4-D) is an herbicide and is among the most widely distributed pollutant in the environment and wastewater. Herein is presented a complete comparison of adsorption performance between two different magnetic carbon nanomaterials: graphene oxide (GO) and its reduced form (rGO). Magnetic functionalization was performed employing a coprecipitation method, using only one source of Fe2+, requiring low energy, and potentially allowing the control of the amount of incorporated magnetite. For the first time in literature, a green reduction approach for GO with and without Fe3O4, maintaining the magnetic behavior after the reaction, and an adsorption performance comparison between both carbon nanomaterials are demonstrated. The nanoadsorbents were characterized by FTIR, XRD, Raman, VSM, XPS, and SEM analyses, which demonstrates the successful synthesis of graphene derivate, with different amounts of incorporate magnetite, resulting in distinct magnetization values. The reduction was confirmed by XPS and FTIR techniques. The type of adsorbent reveals that the amount of magnetite on nanomaterial surfaces has significant influence on adsorption capacity and removal efficiency. The procedure demonstrated that the best performance, for magnetic nanocomposites, was obtained by GO∙Fe3O4 1:1 and rGO∙Fe3O4 1:1, presenting values of removal percentage of 70.49 and 91.19%, respectively. The highest adsorption capacity was reached at pH 2.0 for GO∙Fe3O4 1:1 (69.98 mg g-1) and rGO∙Fe3O4 1:1 (89.27 mg g-1), through different interactions: π-π, cation-π, and hydrogen bonds. The adsorption phenomenon exhibited a high dependence on pH, initial concentration of adsorbate, and coexisting ions. Sips and PSO models demonstrate the best adjustment for experimental data, suggesting a heterogeneous surface and different energy sites, respectively. The thermodynamic parameters showed that the process was spontaneous and exothermic. Finally, the nanoadsorbents demonstrated a high efficiency in 2,4-D adsorption even after five adsorption/desorption cycles.


Assuntos
Grafite , Herbicidas , Nanocompostos , Poluentes Químicos da Água , Adsorção , Herbicidas/análise , Grafite/química , Óxido Ferroso-Férrico , Água/química , Nanocompostos/química , Fenômenos Magnéticos , Ácido 2,4-Diclorofenoxiacético , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
4.
Nanotechnology ; 35(20)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38320322

RESUMO

The increasing use of nanomaterials in consumer products is expected to lead to environmental contamination sometime soon. As water pollution is a pressing issue that threatens human survival and impedes the promotion of human health, the search for adsorbents for removing newly identified contaminants from water has become a topic of intensive research. The challenges in the recyclability of contaminated water continue to campaign the development of highly reusable catalysts. Although exfoliated 2D MXene sheets have demonstrated the capability towards water purification, a significant challenge for removing some toxic organic molecules remains a challenge due to a need for metal-based catalytic properties owing to their rapid response. In the present study, we demonstrate the formation of hybrid structure AuNPs@MXene (Mo2CTx) during the sensitive detection of Au nanoparticle through MXene sheets without any surface modification, and subsequently its applications as an efficient catalyst for the degradation of 4-nitrophenol (4-NP), methyl orange (MO), and methylene blue (MB). The hybrid structure (AuNPs@MXene) reveals remarkable reusability for up to eight consecutive cycles, with minimal reduction in catalytic efficiency and comparable apparent reaction rate constant (Kapp) values for 4-NP, MB, and MO, compared to other catalysts reported in the literature.

5.
Int J Biol Macromol ; 256(Pt 2): 128268, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007017

RESUMO

Polymer-based membranes containing nanocellulose and natural macromolecules have potential to treat water, however few works have associated the changes in chemical and morphological membrane's features with their performance as adsorbent. Herein, a new green composite based on nanocellulose (NC) and alkylated tannic acid (ATA) and cross-linked with proanthocyanidin was produced and incorporated into polyacrylonitrile (PAN) membranes to eliminate propranolol (PRO) from water. Characterizations revealed that the increasing of NC-ATA content reduced the pore size of the membrane's upper surface and made the finger like structure of the sublayer disappear, due to the formation of hydrophilic domains of NC/ATA which speeds up the external solidification step. The presence of NC-ATA reduced the hydrophilicity, from a water contact angle of 3.65° to 16.51°, the membrane roughness, from 223.5 to 52.0 nm, and the zeta potential from -25.35 to -55.20 mV, improving its features to be a suitable adsorbent of organic molecules. The membranes proved to be excellent green adsorbent, tridimensional, and easy to remove after use, and qmax for PRO was 303 mg·g-1. The adsorption mechanism indicates that H-bonds, ion exchange, and π-π play important role in adsorption. NC-ATA@PAN kept high removal efficiencies after four cycles, evidencing the potential for water purification.


Assuntos
Polifenóis , Proantocianidinas , Poluentes Químicos da Água , Propranolol , Água , Adsorção , Poluentes Químicos da Água/química
6.
Environ Pollut ; 327: 121483, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36990344

RESUMO

Microalgae and Cyanobacteria extracts can be used for the synthesis of spherical silver nanoparticles by the reduction of AgNO3 under air atmosphere at room temperature. Here, we synthesized AgNPs using extracts of one cyanobacterium (Synechococcus elongatus) and two microalgae (Stigeoclonium sp. and Cosmarium punctulatum). The nature of the AgNPs was characterized by TEM, HR-TEM, EDS, and UV-Vis. Considering the large quantity of functional groups in the ligands of AgNPs, we suppose they could retain ion metals, which would be useful for water decontamination. Thus, their capacity to adsorb iron and manganese at concentrations of 1.0, 5.0, and 10.0 mg L-1 in aqueous solutions was evaluated. All experiments were performed in triplicate of microorganism extract with no addition of AgNO3 (control) and AgNP colloid (treatment) at room temperature. The ICP analyses showed that the treatments containing nanoparticles were commonly more efficient at removing Fe3+ and Mn2+ ions than the corresponding controls. Interestingly, the smaller nanoparticles (synthesized by Synechococcus elongatus) were the most effective at removing Fe3+ and Mn2+ ions, probably due to their higher surface area:volume ratio. The green synthesized AgNPs proved to be an interesting system for the manufacture of biofilters that could be used to capture contaminant metals in water.


Assuntos
Manganês , Nanopartículas Metálicas , Prata , Ferro , Água , Extratos Vegetais , Antibacterianos
7.
Artigo em Inglês | MEDLINE | ID: mdl-36674141

RESUMO

Most conventional methods to remove heavy metals from water are efficient for high concentrations, but they are expensive, produce secondary pollution, and cannot remove low concentrations. This paper proposes a biological system to remove Cr(VI) from aqueous solutions; the biofilter is composed of a native Pseudomonas koreensis immobilized in calcium alginate beads. Lab experiments were conducted in batch reactors, considering different operating conditions: Cr(VI) concentration, temperature, pH, and time. At 30 °C and a pH of 6.6, the immobilized bacteria achieved their optimal adsorption capacity. In the chromium adsorption system, saturation was reached at 30 h with a qmax = 625 mg g-1. By adjusting the experimental data to the Langmuir and Freundlich models, it is suggested that P. koreensis forms a biofilm with a homogeneous surface where Cr(VI) is adsorbed and that the bacteria also incorporates the metal in its metabolism, leading to a multilayer adsorption. On the other hand, using Fourier transform infrared spectroscopy, it was inferred that the functional groups involved in the adsorption process were O-H and C=O, which are a part of the P. koreensis cell wall.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Água , Adsorção , Alginatos/química , Poluentes Químicos da Água/análise , Cromo/análise , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Braz. j. biol ; 83: e273843, 2023.
Artigo em Inglês | VETINDEX | ID: biblio-1447642

RESUMO

Instead of typical household trash, the heavy metal complexes, organic chemicals, and other poisons produced by huge enterprises threaten water systems across the world. In order to protect our drinking water from pollution, we must keep a close eye on the situation. Nanotechnology, specifically two-dimensional (2D) nanomaterials, is used in certain wastewater treatment systems. Graphene, g-C3N4, MoS2, and MXene are just a few examples of emerging 2D nanomaterials that exhibit an extraordinary ratio of surface (m3), providing material consumption, time consumption, and treatment technique for cleaning and observing water. In this post, we'll talk about the ways in which 2D nanomaterials may be tuned to perform certain functions, namely how they can be used for water management. The following is a quick overview of nanostructured materials and its possible use in water management: Also discussed in length are the applications of 2D nanomaterials in water purification, including pollutant adsorption, filtration, disinfection, and photocatalysis. Fluorescence sensors, colorimetric, electrochemical, and field-effect transistors are only some of the devices being studied for their potential use in monitoring water quality using 2D nanomaterials. Utilizing 2D content has its benefits and pitfalls when used to water management. New developments in this fast-expanding business will boost water treatment quality and accessibility in response to rising awareness of the need of clean, fresh water among future generations.


Em vez do lixo doméstico típico, os complexos de metais pesados, produtos químicos orgânicos e outros venenos produzidos por grandes empresas ameaçam os sistemas de água em todo o mundo. Para proteger nossa água potável da poluição, devemos ficar de olho na situação. A nanotecnologia, especificamente nanomateriais bidimensionais (2D), é usada em certos sistemas de tratamento de águas residuais. Grafeno, g-C3N4, MoS2 e MXene são apenas alguns exemplos de nanomateriais 2D emergentes que exibem uma extraordinária proporção de superfície (m3), proporcionando consumo de material, consumo de tempo e técnica de tratamento para limpeza e observação da água. Neste trabalho, trataremos das maneiras pelas quais os nanomateriais 2D podem ser ajustados para desempenhar determinadas funções, ou seja, como eles podem ser usados para o gerenciamento de água. A seguir, uma breve visão geral dos materiais nanoestruturados e seu possível uso no gerenciamento de água. Serão também discutidas detalhadamente as aplicações de nanomateriais 2D na purificação de água, incluindo adsorção de poluentes, filtração, desinfecção e fotocatálise. Sensores de fluorescência, colorimétricos, eletroquímicos e transistores de efeito de campo são apenas alguns dos dispositivos que estão sendo estudados para uso potencial no monitoramento da qualidade da água usando nanomateriais 2D. A utilização de conteúdo 2D tem seus benefícios e armadilhas quando utilizada para gerenciamento de água. Novos desenvolvimentos neste negócio em rápida expansão visam aumentar a qualidade e a acessibilidade do tratamento de água em resposta à crescente conscientização sobre a necessidade de água limpa e fresca entre as gerações futuras.


Assuntos
Poluição da Água/prevenção & controle , Monitoramento da Água , Purificação da Água , Nanoestruturas
9.
Environ Technol ; : 1-11, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36222246

RESUMO

In this work, fern-leaf-like BiVO4 was used to photocatalytically reduce Cr6+ in water. Nanosized BiVO4 displayed bandgap energy and specific surface area of 2.49 eV and 5.65 m2 g-1, respectively. Metallic Au nanoparticles were deposited on the BiVO4 to increase the photocatalytic performance. To optimize the reaction conditions, the sacrificial agents methanol, ethanol, formic acid, dimethyl sulfoxide, and KI were tested, while different catalyst dosages and Au loadings were assessed. The best sacrificial agent was formic acid, which was used at an optimal concentration of 0.01 mol L-1. The complete removal of Cr6+ was attained after 90 min of visible light irradiation using a catalyst dosage of 1.5 g L-1. Depositing metallic Au nanoparticles barely improved the photocatalytic performance, thus unmodified BiVO4 was used to remove Cr6+ in tap water. The matrix effect slowed the photocatalytic process, and the complete removal of Cr6+ was achieved in 120 min. Cr3+ and Cr6+ species were precipitated on the catalyst surface at the end of the photocatalytic process; still, BiVO4 displayed high stability after three reaction cycles.

10.
Water Res ; 211: 118071, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35063927

RESUMO

Metaldehyde is a polar, mobile, low molecular weight pesticide that is challenging to remove from drinking water with current adsorption-based micropollutant treatment technologies. Alternative strategies to remove this and compounds with similar properties are necessary to ensure an adequate supply of safe and regulation-compliant drinking water. Biological removal of metaldehyde below the 0.1 µg•L-1 regulatory concentration was attained in pilot-scale slow sand filters (SSFs) subject to bioaugmentation with metaldehyde-degrading bacteria. To achieve this, a library of degraders was first screened in bench-scale assays for removal at micropollutant concentrations in progressively more challenging conditions, including a mixed microbial community with multiple carbon sources. The best performing strains, A. calcoaceticus E1 and Sphingobium CMET-H, showed removal rates of 0.0012 µg•h-1•107 cells-1 and 0.019 µg•h-1•107 cells-1 at this scale. These candidates were then used as inocula for bioaugmentation of pilot-scale SSFs. Here, removal of metaldehyde by A. calcoaceticus E1, was insufficient to achieve compliant water regardless testing increasing cell concentrations. Quantification of metaldehyde-degrading genes indicated that aggregation and inadequate distribution of the inoculum in the filters were the likely causes of this outcome. Conversely, bioaugmentation with Sphingobium CMET-H enabled sufficient metaldehyde removal to achieve compliance, with undetectable levels in treated water for at least 14 d (volumetric removal: 0.57 µg•L-1•h-1). Bioaugmentation did not affect the background SSF microbial community, and filter function was maintained throughout the trial. Here it has been shown for the first time that bioaugmentation is an efficient strategy to remove the adsorption-resistant pesticide metaldehyde from a real water matrix in upscaled systems. Swift contaminant removal after inoculum addition and persistent activity are two remarkable attributes of this approach that would allow it to effectively manage peaks in metaldehyde concentrations (due to precipitation or increased application) in incoming raw water by matching them with high enough degrading populations. This study provides an example of how stepwise screening of a diverse collection of degraders can lead to successful bioaugmentation and can be used as a template for other problematic adsorption-resistant compounds in drinking water purification.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Acetaldeído/análogos & derivados , Filtração , Poluentes Químicos da Água/análise
11.
Biomedica ; 41(4): 745-755, 2021 12 15.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-34936258

RESUMO

INTRODUCTION: Enteric viruses have been associated with the production of a variety of diseases transmitted by the fecal-oral route and carried through contaminated food and water. Given their structure and composition, they are highly resistant to environmental conditions and most of the chemical agents used in the purification processes. Therefore, the systematic monitoring of raw water is necessary to ensure its quality especially when it is used for producing drinking water for human consumption. OBJECTIVE: We identified the presence of rotavirus and hepatitis A virus by means of the fluoro-immuno-magnetic separation technique (FIMS) in raw water taken from four purification plants and their water supplies in the department of Norte de Santander. MATERIALS AND METHODS: The viruses were captured and separated from the water samples using magnetic microparticles functionalized with monoclonal anti-Hepatitis A and anti-Rotavirus antibodies. Confocal microscopy was used to monitor the viral concentration process and transmission electron microscopy for the morphological visualization of the separated viruses. The reverse transcriptase-coupled polymerase chain reaction (RT-PCR) was applied to confirm the presence of pathogens. RESULTS: The two enteric viruses were identified in the majority of the analyzed water samples including water supply sources. CONCLUSION: We determined that the FIMS technique together with RT-PCR is highly effective for the detection of viral pathogens in complex matrices such as raw water.


Introducción. Los virus entéricos se asocian con una serie de enfermedades transmitidas por vía fecal-oral en alimentos o agua contaminada. Dada su estructura y composición, son muy resistentes a las condiciones ambientales y a la mayoría de los agentes químicos empleados en los procesos de potabilización, por lo cual es necesario un monitoreo sistemático del agua cruda para asegurar su calidad, máxime cuando se emplea como materia prima en la producción de agua potable para consumo humano. Objetivo. Determinar la presencia de rotavirus y del virus de la hepatitis A mediante la técnica de separación fluoro-inmuno-magnética en agua cruda procedente de cuatro plantas de potabilización y sus fuentes hídricas en el departamento de Norte de Santander. Materiales y métodos. Los virus fueron capturados y separados a partir de las muestras de agua, empleando micropartículas magnéticas funcionalizadas con anticuerpos monoclonales anti-hepatitis A y anti-rotavirus. Se empleó microscopía confocal para hacer el seguimiento del proceso de concentración viral y, microscopía electrónica de transmisión, para la visualización morfológica de los virus separados. La reacción en cadena de la polimerasa acoplada a transcriptasa inversa (RT-PCR) se utilizó para confirmar la presencia de los patógenos. Resultados. Los dos virus entéricos se detectaron en la mayoría de las muestras de agua analizadas, incluidas las de sus fuentes hídricas. Conclusión. La técnica de separación fluoro-inmuno-magnética acoplada a RT-PCR fue altamente efectiva en la detección de patógenos virales en matrices complejas como el agua cruda.


Assuntos
Enterovirus , Vírus da Hepatite A , Rotavirus , Vírus , Enterovirus/genética , Vírus da Hepatite A/genética , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rotavirus/genética , Vírus/genética , Microbiologia da Água
12.
Biomédica (Bogotá) ; Biomédica (Bogotá);41(4): 745-755, oct.-dic. 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1355747

RESUMO

Abstract | Introduction: Enteric viruses have been associated with the production of a variety of diseases transmitted by the fecal-oral route and carried through contaminated food and water. Given their structure and composition, they are highly resistant to environmental conditions and most of the chemical agents used in the purification processes. Therefore, the systematic monitoring of raw water is necessary to ensure its quality especially when it is used for producing drinking water for human consumption. Objective: We identified the presence of rotavirus and hepatitis A virus by means of the fluoro-immuno-magnetic separation technique (FIMS) in raw water taken from four purification plants and their water supplies in the department of Norte de Santander. Materials and methods: The viruses were captured and separated from the water samples using magnetic microparticles functionalized with monoclonal anti-Hepatitis A and anti-Rotavirus antibodies. Confocal microscopy was used to monitor the viral concentration process and transmission electron microscopy for the morphological visualization of the separated viruses. The reverse transcriptase-coupled polymerase chain reaction (RT-PCR) was applied to confirm the presence of pathogens. Results: The two enteric viruses were identified in the majority of the analyzed water samples including water supply sources. Conclusion: We determined that the FIMS technique together with RT-PCR is highly effective for the detection of viral pathogens in complex matrices such as raw water.


Resumen | Introducción. Los virus entéricos se asocian con una serie de enfermedades transmitidas por vía fecal-oral en alimentos o agua contaminada. Dada su estructura y composición, son muy resistentes a las condiciones ambientales y a la mayoría de los agentes químicos empleados en los procesos de potabilización, por lo cual es necesario un monitoreo sistemático del agua cruda para asegurar su calidad, máxime cuando se emplea como materia prima en la producción de agua potable para consumo humano. Objetivo. Determinar la presencia de rotavirus y del virus de la hepatitis A mediante la técnica de separación fluoro-inmuno-magnética en agua cruda procedente de cuatro plantas de potabilización y sus fuentes hídricas en el departamento de Norte de Santander. Materiales y métodos. Los virus fueron capturados y separados a partir de las muestras de agua, empleando micropartículas magnéticas funcionalizadas con anticuerpos monoclonales anti-hepatitis A y anti-rotavirus. Se empleó microscopía confocal para hacer el seguimiento del proceso de concentración viral y, microscopía electrónica de transmisión, para la visualización morfológica de los virus separados. La reacción en cadena de la polimerasa acoplada a transcriptasa inversa (RT-PCR) se utilizó para confirmar la presencia de los patógenos. Resultados. Los dos virus entéricos se detectaron en la mayoría de las muestras de agua analizadas, incluidas las de sus fuentes hídricas. Conclusión. La técnica de separación fluoro-inmuno-magnética acoplada a RT-PCR fue altamente efectiva en la detección de patógenos virales en matrices complejas como el agua cruda.


Assuntos
Infecções por Rotavirus , Água Bruta , Separação Magnética , Purificação da Água , Hepatite A , Anticorpos
13.
Sci Total Environ ; 789: 147952, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34058576

RESUMO

Forest cover improves surface water quality by minimizing soil erosion, reducing sediment in water and trapping or filtering water pollutants in forest litter. Because the amount of chemicals needed to produce potable water depends on the quality of intake water, upstream forest cover protection may help reduce the extent and cost of water treatment downstream. However, many other drivers exist for the cost of water treatment, so the magnitude and relevance of the influence of forest cover on water treatment cost is an empirical question. We analyze the impact of forest cover on the quality of raw water and the extent of water treatment required at the water treatment plants in Costa Rica, using monthly panel data in 2008-2014 from the drinking water treatment plants managed by the national public utility. We find that forest cover change during the study period statistically significantly affected the chemical use by water treatment plants. In economic terms, the estimated value of water purification service provided by forests is USD 9.5 per hectare per year. Depending on the discount rate, this results in a net present value of water purification service ranging between USD 315.4 and USD 113.9 per hectare. The results indicate that the economic value of the water purification service of forest is 1.7% of the value for recreational services; between 3.2% and 1.1% relative to the value of forest carbon sequestration typical in Costa Rica, depending on the discount rate; and around 13% of the payments for watershed protection program by the National Forest Financing Fund. The results also show that the marginal contribution of forest, on a per hectare basis, on water quality becomes larger as the size of catchment decreases.


Assuntos
Ecossistema , Purificação da Água , Conservação dos Recursos Naturais , Costa Rica , Florestas , Qualidade da Água
14.
J Environ Sci (China) ; 101: 304-312, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33334525

RESUMO

Chromium (Cr) is used in many manufacturing processes, and its release into natural waters is a major environmental problem today. Low concentrations of Cr(VI) are toxic to human health and living organisms due to the carcinogenic and mutagenic nature of this mineral. This work examined the conversion of Cr(VI) to Cr(III) via electrochemical reduction using gold electrode in an acidic sodium alginate (SA) solution and subsequent removal of the produced Cr(III)-SA by the polymer-enhanced ultrafiltration (PEUF) technique. A solution of SA in nitric acid was used both as an electrolytic medium during the voltammetric measurements and bulk electrolysis and as an extracting agent during the PEUF technique. The electroanalysis of Cr(VI) was performed by linear sweep voltammetry in the presence of acidic SA solution to study its voltammetric behavior as a function of the Cr(VI) concentration, pH, presence of Cr(III), SA concentration and scan rate. In addition, the quantitative reduction of Cr(VI) to Cr(III) was studied through the bulk electrolysis technique. The results showed efficient reduction with well-defined peaks at approximately 0.3 V vs. Ag/AgCl, using a gold working electrode. As the pH increased, the reduction signal strongly decreased until its disappearance. The optimum SA concentration was 10 mmol/L, and it was observed that the presence of Cr(III) did not interfere in the Cr(VI) electroanalysis. Through the quantitative reduction by bulk electrolysis in the presence of acidic SA solution, it was possible to reduce all Cr(VI) to Cr(III) followed by its removal via PEUF.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Alginatos , Cromo , Humanos , Concentração de Íons de Hidrogênio , Oxirredução
15.
Int J Mol Sci ; 21(18)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906692

RESUMO

Bacterial cellulose (BC) and graphene are materials that have attracted the attention of researchers due to their outstanding properties. BC is a nanostructured 3D network of pure and highly crystalline cellulose nanofibres that can act as a host matrix for the incorporation of other nano-sized materials. Graphene features high mechanical properties, thermal and electric conductivity and specific surface area. In this paper we review the most recent studies regarding the development of novel BC-graphene nanocomposites that take advantage of the exceptional properties of BC and graphene. The most important applications of these novel BC-graphene nanocomposites include the development of novel electric conductive materials and energy storage devices, the preparation of aerogels and membranes with very high specific area as sorbent materials for the removal of oil and metal ions from water and a variety of biomedical applications, such as tissue engineering and drug delivery. The main properties of these BC-graphene nanocomposites associated with these applications, such as electric conductivity, biocompatibility and specific surface area, are systematically presented together with the processing routes used to fabricate such nanocomposites.


Assuntos
Celulose/química , Grafite/química , Nanocompostos/química , Bactérias/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Condutividade Elétrica
16.
Materials (Basel) ; 13(8)2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32325750

RESUMO

Water pollution by heavy metals represents several health risks. Conventional technologies employed to eliminate lead ions from residual or drinking water are expensive, therefore an efficient and low-cost technique is required and adsorption processes are a good alternative. In this work, the goal was to determine the adsorption capacity of a Disordered Mesoporous Silica 1 material (DMS-1) functionalized with amino groups, for Pb(II) ions removal. DMS-1 was prepared by sol-gel method and the incorporation of amino groups was performed by ex-situ method. As the source of amine groups, (3-Aminopropyl) triethoxysilane (APTES) was used and three different xNH2/DMS-1 molar ratios (0.2, 0.3, 0.4) were evaluated. In order to evaluate the incorporation of the amino group into the mesopore channels, thermal and structural analysis were made through Thermogravimetric Analysis (TGA), nitrogen adsorption-desorption at 77 K by Specific Brunauer-Emmett-Teller (SBET) method, Fourier Transfer Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and X-Ray Photoelectron Spectroscopy (XPS). The higher Pb(II) ions removal was achieved with the 0.3 molar proportion of xNH2/DMS-1 reaching 99.44% efficiency. This result suggests that the functionalized material can be used as an efficient adsorbent for Pb(II) ions from aqueous solution.

17.
Heliyon ; 6(1): e03062, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31909250

RESUMO

Water purification is indispensable to guarantee safe human consumption and to prevent diseases caused by the ingestion of contaminated water. This requires a series of water treatment processes which require investment. However, the economic limitations of rural communities hinder their ability to implement such water-treatment systems, as is the case in Ciénaga Grande of Santa Marta ("Large Swamp", in English) in Colombia. Low-cost systems can be used instead as simple and safe alternatives. Therefore, the objective of this work was to evaluate non-conventional, low-cost water processes to purify the water from the collection point of two stilt house villages in Ciénaga Grande of Santa Marta. These include: 1) Using two natural coagulants, Moringa Oleifera and Cassia Fistula; 2) filtration through a biosand filter and a carbon activated filter; and 3) disinfection through UV-C Radiation and through solar disinfection. The results showed a turbidity values reduction between 52% and 96% using the two natural coagulants; both turbidity and total coliforms achieved reductions of 98.4% and 76.9%, respectively in the filtration process; and removal of total coliforms up to 98.8% in the disinfection process. Despite the high rates of reduction in the different parameters, the water does not comply with the recommended limits for safe drinking water.

18.
Mol Biol Rep ; 47(2): 1233-1239, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31813130

RESUMO

Molecular detection of Giardia duodenalis by polymerase chain reaction (PCR) is difficult in faecal samples due to inhibitors that contaminate DNA preparations, or due to low cyst concentrations. In order to eliminate inhibitors, improve cyst recovery and molecular detection of G. duodenalis, different types of water, distillates (MDs), deionized (MDz), injection (MI) or Milli-Q® (MM) were used instead of formaldehyde (F) in the laboratory routine method (Ritchie). Cysts were isolated from faecal samples with low cyst concentrations (< 1 cyst/field), medium (1-2 cysts/field) or high (> 2 cysts/field). Cyst recovery was improved using all water types (MDs, MDz, MI, MM) compared to formaldehyde. At all cyst concentrations, the use of MM consistently showed the greatest recovery of G. duodenalis cysts . DNA samples from recovered cysts were tested for the glutamate dehydrogenase (GDH) and ß-giardin (ßg) genes. The use of Milli-Q® water allowed to detect both genes in all cyst concentrations, including low. The method processed with the other types of water amplified these genes at high and medium cyst concentrations. GDH and ßg genes were not detected when the sample was processed with formaldehyde. These experimental results were confirmed in clinical samples. The results suggest that Milli-Q® water provides the highest cyst recovery from stool samples and, correspondingly, the highest sensitivity for detecting G. duodenalis by microscopy or PCR for GDH and ßg genes, even at low concentration of cysts.


Assuntos
Fezes/parasitologia , Giardia lamblia/genética , Giardíase/diagnóstico , Giardíase/parasitologia , Técnicas de Diagnóstico Molecular , Genótipo , Giardia lamblia/crescimento & desenvolvimento , Glutamato Desidrogenase/genética , Humanos , Reação em Cadeia da Polimerase , Proteínas de Protozoários/genética
19.
Bol. venez. infectol ; 30(1): 5-9, ene-jun 2019.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1007546

RESUMO

El agua de uso y consumo humano debe reunir ciertas características de potabilidad para evitar que causen enfermedades, los gobiernos de los países son responsables de la calidad del agua, la purificación se realiza por varios procesos que aseguran que esté libre de patógenos, de sustancias químicas, físicas y radiológicas, siguiendo pautas de la Organización Mundial de la Salud (OMS). Las diarreas infecciosas son causadas por diferentes patógenos y muy frecuentemente asociadas al consumo de agua no potable. Desde hace varios años, en Venezuela, se presentan fallas en el suministro regular de agua potable intra-domiciliario, por fallas en la cadena de distribución y almacenamiento, además son frecuentes problemas deficitarios del suministro de energía eléctrica. Más reciente, en marzo de 2019, se presentó a escala nacional un colapso total del suministro de energía eléctrica que duró de 3 a 7 días, lo cual dejó a los ciudadanos sin el suministro de agua en sus hogares, además de fallas del transporte, colapso hospitalario, colocando en riesgo socio-sanitario a millones de personas. El objeto del documento es servir de guía e informar a la comunidad sobre las enfermedades más frecuentes asociadas al consumo de agua no potable; aconsejar sobre los cuidados especiales en los niños y, brindar medidas preventivas prácticas recomendadas para la purificación del agua de uso y consumo humano.


Water use and human consumption must meet certain characteristics of drinking to avoid causing diseases, the Governments of the countries are responsible for the quality of the water, purification is performed by several processes which ensure that it is free of pathogenic substances chemical, physical and radiological, following guidelines of the World Health Organization (WHO). Infectious diarrhea are caused by different pathogens and often associated with the consumption of non-potable water. For several years, in Venezuela, failures occur at regular drinking water supply intra-household, for failures in the chain of distribution and storage, they are also frequent electricity supply deficit. Most recently, in March 2019, arose nationwide a total collapse of the supply of electrical energy that lasted from 3 to 7 days, which left the people without water in their homes, in addition to transport, hospital collapse in putting at risk health to millions of people. The object of the document is to guide and inform the community about the most frequent illnesses associated with the consumption of non-potable water; advise on special child care and, provide preventive measures recommended for purification practices water use and human consumption.

20.
Univ. sci ; 24(1): 135-163, Jan-Apr. 2019. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1014757

RESUMO

Abstract Population growth and urbanization pose a greater pressure for the treatment of drinking water. Additionally, different treatment units, such as decanters and filters, accumulate high concentrations of iron (Fe) and manganese (Mn), which in many cases can be discharged into the environment without any treatment when maintenance is performed. Therefore, this paper evaluates the effectiveness of vertical subsurface wetlands for Fe and Mn removal from wastewater in drinking water treatment plants, taking a pilot scale wetland with an ascending gravel bed with two types of plants: C. esculenta and P. australis in El Hormiguero (Cali, Colombia), as an example. The pilot system had three upstream vertical wetlands, two of them planted and the third one without a plant used as a control. The wetlands were arranged in parallel and each formed by three gravel beds of different diameter. The results showed no significant difference for the percentage of removal in the three wetlands for turbidity (98 %), Fe (90 %), dissolved Fe (97 %) and Mn (98 %). The dissolved oxygen presented a significant difference between the planted wetlands and the control. C. esculenta had the highest concentration of Fe in the root with (103.5 ± 20.8) μg/g; while P australis had the highest average of Fe concentrations in leaves and stem with (45.7 ± 24) μg/g and (41.4 ± 9.1) μg/g, respectively. It is concluded that subsurface wetlands can be an interesting alternative for wastewater treatment in the maintenance of drinking water treatment plants. However, more research is needed for the use of vegetation or some technologies for the removal or reduction of the pollutant load in wetlands, since each drinking water treatment plant will require a treatment system for wastewater, which in turn requires a wastewater treatment system as well


Resumen El crecimiento de la población y la urbanización imponen una mayor presión al tratamiento de agua potable. Por otra parte, las diferentes unidades de tratamiento, como decantadores y filtros, acumulan altas concentraciones de hierro (Fe) y manganeso (Mn), las cuales, en muchos casos, son descargadas en el ambiente sin ningún tratamiento cuando se hace mantenimiento. Este artículo evalúa la efectividad de humedales subsuperficiales de flujo vertical para la remoción de Fe y Mn provenientes de agua residual en plantas de tratamiento de agua potable, tomando como ejemplo un humedal de flujo ascendente a escala piloto, con un lecho de grava y dos tipos de plantas: C. esculenta y P. australis en El Hormiguero (Cali, Colombia). El sistema piloto consistió en tres humedales verticales de flujo ascendente, dos de ellos plantados y el tercero sin plantas, como control. Los humedales se organizaron en paralelo, cada uno formado por tres lechos de grava de diferente diámetro. Los resultados mostraron que no hubo diferencia significativa en el porcentaje de remoción en los tres humedales para turbidez (98 %), Fe (90 %), Fe disuelto (97 %) y Mn (98 %). El oxígeno disuelto presentó una diferencia significativa entre los humedales plantados y el control. C. esculenta tuvo la concentración más alta de Fe en la raíz, con (103.5 ± 20.8) μg/g; mientras que P. australis tuvo el promedio más alto de concentraciones de Fe en hojas y tallos, con (45.7 ± 24) μg/g y (41.4 ± 9.1) μg/g, respectivamente. Se concluye que los humedales subsuperficiales pueden ser una alternativa interesante para el tratamiento de aguas residuales en el mantenimiento de plantas de tratamiento de agua potable. Sin embargo, se requiere más investigación sobre el uso de vegetación u otras tecnologías para la remoción o reducción de la carga contaminante en humedales, ya que cada planta de tratamiento de agua potable o su sistema de tratamiento de aguas residuales con humedales mantendrá el contaminante en el sistema.


Resumo O crescimento da população e da urbanização impõem uma maior pressão ao tratamento de água potável. Adicionalmente, as diferentes unidades de tratamento, como decantadores e filtros, acumulam altas concentrações de ferro (Fe) e manganês (Mn), as quais, em muitos casos, são liberadas no ambiente durante a manutenção, sem receber nenhum tipo de tratamento. Este artigo avaliou a eficácia de zonas úmidas subsuperficiais de fluxo vertical na remoção de Fe e Mn provenientes das águas residuais de estações de tratamento de água potável, usando como exemplo uma zona úmida a escala piloto com fluxo ascendente, leito de cascalho e dois tipos de plantas, C. esculenta e P. australis, localizada em El Hormiguero (Cali, Colombia). O sistema piloto usou três zonas úmidas verticais de fluxo ascendente, duas delas com plantas e a terceira sem plantas, como controle. As zonas húmidas foram organizadas em paralelo, cada uma sendo formada por três leitos de cascalho de diferente diâmetro. Os resultados mostraram que não houve diferença significativa na porcentagem de remoção das três zonas úmidas em termos de turbidez (98 %), Fe (90 %), Fe dissolvido (97 %) e Mn (98 %). O oxigênio dissolvido apresentou uma diferença significativa entre as zonas úmidas plantadas e a controle. C. esculenta teve a concentração mais alta de Fe na raiz, (103.5 ± 20.8) μg/g, em quanto P. au tralis teve a maior média de concentrações de Fe nas folhas e nos talos, (45.7 ± 24) μg/g e (41.4 ± 9.1) μg/g, respetivamente. Concluiuse que as zonas úmidas subsuperficiais podem ser uma alternativa interessante para o tratamento de águas residuais durante a manutenção de estações de tratamento de água potável. No entanto, mais pesquisa é necessária para determinar a importâncias do uso da vegetação ou outras tecnologias para a remoção ou diminuição da carga contaminante nas zonas úmidas, pois cada estação de tratamento de água potável ou sistema de tratamento de águas residuais com zonas úmidas irá manter oconaminante no sistema.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA