Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37765872

RESUMO

The development and growth of Wireless Sensor Networks (WSNs) is significantly propelled by advances in Radio Frequency (RF) and Visible Light Communication (VLC) technologies. This paper endeavors to present a comprehensive review of the state-of-the-art in cognitive hybrid RF-VLC systems for WSNs, emphasizing the critical task of seamlessly integrating Cognitive Radio Sensor Networks (CRSNs) and VLC technologies. The central challenge addressed is the intricate landscape of this integration, characterized by notable trade-offs between performance and complexity, which escalate with the addition of more devices and increased data rates. This scenario necessitates the development of advanced cognitive radio strategies, potentially facilitated by Machine Learning (ML) and Deep Learning (DL) approaches, albeit introducing new complexities such as the necessity for pre-training with extensive datasets. The review scrutinizes the fundamental aspects of CRSNs and VLC, spotlighting key areas like Energy Efficient Resource Allocation, Industrial Scenarios, and Energy Harvesting, and explores the synergistic amalgamation of these technologies as a promising pathway for enhanced spectrum utilization and network performance. By delving into the integration of cognitive radio technology with visible light, this study furnishes valuable insights into the potential for innovative applications in wireless communication, presenting a balanced overview of the current advancements and prospective avenues in the field of cognitive hybrid RF/VLC systems.

2.
Sensors (Basel) ; 23(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37688001

RESUMO

The expectation for communication systems beyond 5G/6G is to provide high reliability, high throughput, low latency, and high energy efficiency services. The integration between systems based on radio frequency (RF) and visible light communication (VLC) promises the design of hybrid systems capable of addressing and largely satisfying these requirements. Hybrid network design enables complementary cooperation without interference between the two technologies, thereby increasing the overall system data rate, improving load balancing, and reducing non-coverage areas. VLC/RF hybrid networks can offer reliable and efficient communication solutions for Internet of Things (IoT) applications such as smart lighting, location-based services, home automation, smart healthcare, and industrial IoT. Therefore, hybrid VLC/RF networks are key technologies for next-generation communication systems. In this paper, a comprehensive state-of-the-art study of hybrid VLC/RF networks is carried out, divided into four areas. First, indoor scenarios are studied considering lighting requirements, hybrid channel models, load balancing, resource allocation, and hybrid network topologies. Second, the characteristics and implementation of these hybrid networks in outdoor scenarios with adverse conditions are analyzed. Third, we address the main applications of hybrid VLC/RF networks in technological, economic, and socio-environmental domains. Finally, we outline the main challenges and future research lines of hybrid VLC/RF networks.

3.
Entropy (Basel) ; 24(11)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36359600

RESUMO

Visible light communication (VLC) is considered an enabling technology for future 6G wireless systems. Among the many applications in which VLC systems are used, one of them is harsh environments such as Underground Mining (UM) tunnels. However, these environments are subject to degrading environmental and intrinsic challenges for optical links. Therefore, current research should focus on solutions to mitigate these problems and improve the performance of Underground Mining Visible Light Communication (UM-VLC) systems. In this context, this article presents a novel solution that involves an improvement to the Angle Diversity Receivers (ADRs) based on the adaptive orientation of the Photo-Diodes (PDs) in terms of the Received Signal Strength Ratio (RSSR) scheme. Specifically, this methodology is implemented in a hemidodecahedral ADR and evaluated in a simulated UM-VLC scenario. The performance of the proposed design is evaluated using metrics such as received power, user data rate, and bit error rate (BER). Furthermore, our approach is compared with state-of-the-art ADRs implemented with fixed PDs and with the Time of Arrival (ToA) reception method. An improvement of at least 60% in terms of the analyzed metrics compared to state-of-the-art solutions is obtained. Therefore, the numerical results demonstrate that the hemidodecahedral ADR, with adaptive orientation PDs, enhances the received optical signal. Furthermore, the proposed scheme improves the performance of the UM-VLC system due to its optimum adaptive angular positioning, which is completed according to the strongest optical received signal power. By improving the performance of the UM-VLC system, this novel method contributes to further consideration of VLC systems as potential and enabling technologies for future 6G deployments.

4.
Sensors (Basel) ; 22(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408098

RESUMO

Underground Mining (UM) is a hostile industry that generally requires a wireless communication system as a cross-cutting axis for its optimal operation. Therefore, in the last five years, it has been shown that, in addition to radio-frequency-based communication links, wireless optical communications, such as Visible Light Communication (VLC), can be applied to UM environments. The application of VLC systems in underground mines, known as UM-VLC, must take into account the unique physical features of underground mines. Among the physical phenomena found in underground mines, the most important ones are the positioning of optical transmitters and receivers, irregular walls, shadowing, and a typical phenomenon found in tunnels known as scattering, which is caused by the atmosphere and dust particles. Consequently, it is necessary to use proper dust particle distribution models consistent with these scenarios to describe the scattering phenomenon in a coherent way in order to design realistic UM-VLC systems with better performance. Therefore, in this article, we present an in-depth study of the interaction of optical links with dust particles suspended in the UM environment and the atmosphere. In addition, we analytically derived a hemispherical 3D dust particle distribution model, along with its main statistical parameters. This analysis allows to develop a more realistic scattering channel component and presents an enhanced UM-VLC channel model. The performance of the proposed UM-VLC system is evaluated using computational numerical simulations following the IEEE 802.1.5.7 standard in terms of Channel Impulse Response (CIR), received power, Signal-to-Noise-Ratio (SNR), Root Mean Square (RMS) delay spread, and Bit Error Rate (BER). The results demonstrate that the hemispherical dust particle distribution model is more accurate and realistic in terms of the metrics evaluated compared to other models found in the literature. Furthermore, the performance of the UM-VLC system is negatively affected when the number of dust particles suspended in the environment increases.

5.
Sensors (Basel) ; 20(13)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635355

RESUMO

We study here the vehicle-to-vehicle (V2V) visible light communication (VLC) between two cars moving along different roadway scenarios: (i) a multiple-lane rectilinear roadway and (ii) a multiple-lane curvilinear roadway. Special emphasis was given to the implementation of full-duplex (FD) cooperative communication protocols to avoid communication disruption in the absence of a line-of-sight (LOS) channel. Importantly, we found that the cooperative FD V2V-VLC is promising for avoiding communication disruptions for cars traveling in realistic curvilinear roadways. Results in this work can be easily extended to the case of vehicle-to-infrastructure (V2I), which can also be promising in cases of low-car-density environments.

6.
Sensors (Basel) ; 20(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023989

RESUMO

In this manuscript we propose a hybrid Visible Light Communication and Radio Frequency (VLC-RF) scheme for the implementation of a portable Phaser Measurement Unit (PMU) for deep underground tunnels. Through computer simulations and laboratory measurements we are capable of providing Coordinated Universal Time (UTC) to the PMUs, as well as high accuracy positioning in a Global Positioning System (GPS) denied environment. The estimated PMU position, time stamp, and electrical power system measurements are sent to a central monitoring station using a radio frequency uplink with a data rate of hundreds of Kbps. Simulations and experimental measurements show that the proposed scheme can be used to control a large number of VLC-RF PMU devices inside a tunnel. The tests demonstrate the viability of the hybrid prototype, which will improve performance compared to commercial PMUs that lack these features.

7.
Sensors (Basel) ; 20(2)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936434

RESUMO

This paper proposes two solutions based on angle diversity receivers (ADRs) to mitigate inter-cell interference (ICI) in underground mining visible light communication (VLC) systems, one of them is a novel approach. A realistic VLC system based on two underground mining scenarios, termed as mining roadway and mine working face, is developed and modeled. A channel model based on the direct component in line-of-sight (LoS) and reflections of non-line-of-sight (NLoS) links is considered, as well as thermal and shot noises. The design and mathematical models of a pyramid distribution and a new hemi-dodecahedral distribution are addressed in detail. The performances of these approaches, accompanied by signal combining schemes, are evaluated with the baseline of a single photo-diode in reception. Results show that the minimum lighting standards established in both scenarios are met. As expected, the root-mean-square delay spread decreases as the distance between the transmitters and receivers increases. Furthermore, the hemi-dodecahedron ADR in conjunction with the maximum ratio combining (MRC) scheme, presents the best performance in the evaluated VLC system, with a maximum user data rate of 250 Mbps in mining roadway and 120 Mbps in mine working face, received energy per bit/noise power of 32 dB and 23 dB, respectively, when the bit error rate corresponds to 10 - 4 , and finally, values of 120 dB in mining roadway and 118 dB in mine working face for signal-to-interference-plus-noise ratio are observed in a cumulative distribution function.

8.
Sensors (Basel) ; 17(11)2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29160800

RESUMO

The security and privacy provided by Visible Light Communication (VLC) technologies is an area that has been slightly addressed due to the misconception that, since light does not go through solid objects like walls, VLC-based communications cannot be eavesdropped on by outside observers. As an upcoming technology, VLC is expected to be used in multiple environments were, due to radio frequency RF overuse or limitations, RF solutions cannot or should not be employed. In this work, we study the eavesdropping characteristics of a VLC-based communication. To evaluate these concerns, a two-step process was followed. First, several simulations of a standardly used scenario were run. Later on, experimental tests were performed. Following those tests, the results of the simulations and the experimental tests were analyzed. The results of these simulations and tests seemed to indicate that VLC channels can be eavesdropped on without considerable difficulties. Furthermore, the results showed that sniffing attacks could be performed from areas outside the expected coverage of the VLC infrastructure. Finally, the use of the simulation such as the one implemented in this work to recognize places from which sniffing is possible helps determine the risk for eavesdropping that our VLC-based network has.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA