Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Microencapsul ; 41(4): 284-295, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38686964

RESUMO

This work aimed to investigate the effectiveness of Lippia sidoides and Syzygium aromaticum essential oils (EOs) encapsulated in nanostructured lipid carriers (NLCs) as SARS-CoV-2 inhibitors through virucidal activity assessment. We developed anionic and cationic NLCs loaded with the EOs and assessed their physicochemical properties and SARS-CoV-2 virucidal activity, focusing on the effects of EO type and the NLCs composition. The NLCs exhibited particle sizes of 141.30 to 160.53 nm for anionic and 109.30 to 138.60 nm for cationic types, with PDIs between 0.16 and 0.25. High zeta potentials (>29.0 in modulus) indicated stable formulations. The NLCs effectively encapsulated the EOs, achieving encapsulation efficiencies between 84.6 to 100% w/w of marker compound. The EOs-loaded NLCs reduced the SARS-CoV-2 virion count, exceeding 2 logs over the control. NLCs loaded with Lippia sidoides and Syzygium aromaticum EOs represent an innovative strategy for combating SARS-CoV-2.


Assuntos
Antivirais , Portadores de Fármacos , Lipídeos , Nanoestruturas , Óleos Voláteis , SARS-CoV-2 , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Óleos Voláteis/administração & dosagem , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/administração & dosagem , Antivirais/química , Lipídeos/química , Portadores de Fármacos/química , Nanoestruturas/química , Humanos , Lippia/química , Syzygium/química , Tratamento Farmacológico da COVID-19 , Tamanho da Partícula , Chlorocebus aethiops , Células Vero , Animais , COVID-19
2.
Viruses ; 16(3)2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38543735

RESUMO

Uncaria tomentosa (UT) is a medicinal plant popularly known as cat's claw belonging to the Rubiaceae family that has been reported to display antiviral and anti-inflammatory activities. The chikungunya virus (CHIKV) outbreaks constitute a Brazilian public health concern. CHIKV infection develops an abrupt onset of fever, usually accompanied by a skin rash, besides incapacitating polyarthralgia. There is no vaccine available or treatment for CHIKV infection. The present study evaluates the hydroalcoholic extract of UT bark as a potential antiviral against CHIKV. The in vitro antiviral activity of the UT extract against the Brazilian CHIKV strain was assessed using quantitative reverse transcription polymerase chain reaction, flow cytometry, and plaque assay. Results obtained demonstrated that UT inhibits CHIKV infection in a dose-dependent manner. At the non-cytotoxic concentration of 100 µg/mL, UT exhibited antiviral activity above 90% as determined by plaque reduction assay, and it reduced the viral cytopathic effect. Similarly, a significant virucidal effect of 100 µg/mL UT was observed after 24 and 48 h post-infection. This is the first report on the antiviral activity of UT against CHIKV infection, and the data presented here suggests UT as a potential antiviral to treat CHIKV infection.


Assuntos
Unha-de-Gato , Febre de Chikungunya , Vírus Chikungunya , Plantas Medicinais , Extratos Vegetais/farmacologia , Antivirais/farmacologia , Febre de Chikungunya/tratamento farmacológico
3.
Biometals ; 37(4): 923-941, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38502284

RESUMO

Coating high-touch surfaces with inorganic agents, such as metals, appears to be a promising long-term disinfection strategy. However, there is a lack of studies exploring the effectiveness of copper-based products against viruses. In this study, we evaluated the cytotoxicity and virucidal effectiveness of products and materials containing copper against mouse hepatitis virus (MHV-3), a surrogate model for SARS-CoV-2. The results demonstrate that pure CuO and Cu possess activity against the enveloped virus at very low concentrations, ranging from 0.001 to 0.1% (w/v). A greater virucidal efficacy of CuO was found for nanoparticles, which showed activity even against viruses that are more resistant to disinfection such as feline calicivirus (FCV). Most of the evaluated products, with concentrations of Cu or CuO between 0.003 and 15% (w/v), were effective against MHV-3. Cryomicroscopy images of an MHV-3 sample exposed to a CuO-containing surface showed extensive damage to the viral capsid, presumably due to the direct or indirect action of copper ions.


Assuntos
Antivirais , COVID-19 , Cobre , SARS-CoV-2 , Cobre/química , Cobre/farmacologia , SARS-CoV-2/efeitos dos fármacos , COVID-19/virologia , Animais , Antivirais/farmacologia , Antivirais/química , Camundongos , Vírus da Hepatite Murina/efeitos dos fármacos , Humanos , Pandemias , Gatos
4.
Biomed Pharmacother ; 167: 115476, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37713986

RESUMO

The Amazonian species investigated in this research are commonly utilized for their anti-inflammatory properties and their potential against various diseases. However, there is a lack of scientifically supported information validating their biological activities. In this study, a total of seventeen ethanolic or aqueous extracts derived from eight Amazonian medicinal plants were evaluated for their activity against Herpes Simplex type 1 (HSV-1) and Chikungunya viruses (CHIKV). Cytotoxicity was assessed using the sulforhodamine B method, and the antiviral potential was determined through a plaque number reduction assay. Virucidal tests were conducted according to EN 14476 standards for the most potent extracts. Additionally, the chemical composition of the most active extracts was investigated. Notably, the LMLE10, LMBA11, MEBE13, and VABE17 extracts exhibited significant activity against CHIKV and the non-acyclovir-resistant strain of HSV-1 (KOS) (SI > 9). The MEBE13 extract demonstrated unique inhibition against the acyclovir-resistant strain of HSV-1 (29-R). Virucidal assays indicated a higher level of virucidal activity compared to their antiviral activity. Moreover, the virucidal capacity of the most active extracts was sustained when tested in the presence of protein solutions against HSV-1 (KOS). In the application of EN 14476 against HSV-1 (KOS), the LMBA11 extract achieved a 99.9% inhibition rate, while the VABE17 extract reached a 90% inhibition rate. This study contributes to the understanding of medicinal species native to the Brazilian Amazon, revealing their potential in combating viral infections that have plagued humanity for centuries (HSV-1) or currently lack specific therapeutic interventions (CHIKV).

5.
Chem Biodivers ; 20(8): e202300192, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37489706

RESUMO

Infection by viruses Chikungunya (CHIKV) and Zika (ZIKV) continue to be serious problems in tropical and subtropical areas of the world. Here, we evaluated the antiviral and virucidal activity of caffeine against CHIKV and ZIKV in Vero, A549, and Huh-7 cell lines. Results showed that caffeine displays antiviral properties against both viruses. By pre-and post-infection treatment, caffeine significantly inhibited CHIKV and ZIKV replication in a dose-dependent manner. Furthermore, caffeine showed a virucidal effect against ZIKV. Molecular docking suggests the possible binding of caffeine with envelope protein and RNA-dependent RNA polymerase of CHIKV and ZIKV. This is the first study that showed an antiviral effect of caffeine against CHIKV and ZIKV. Although further studies are needed to better understand the mechanism of caffeine-mediated repression of viral replication, caffeine appears to be a promising compound that could be used for in vivo studies, perhaps in synergy with other compounds present in daily beverages.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Infecção por Zika virus , Zika virus , Humanos , Febre de Chikungunya/tratamento farmacológico , Febre de Chikungunya/prevenção & controle , Cafeína/farmacologia , Vírus Chikungunya/genética , Simulação de Acoplamento Molecular , Antivirais/farmacologia
6.
Molecules ; 28(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37241897

RESUMO

The large-scale use of alcohol (OH)-based disinfectants to control pathogenic viruses is of great concern because of their side effects on humans and harmful impact on the environment. There is an urgent need to develop safe and environmentally friendly disinfectants. Essential oils (EOs) are generally recognized as safe (GRAS) by the FDA, and many exhibit strong antiviral efficacy against pathogenic human enveloped viruses. The present study investigated the virucidal disinfectant activity of solutions containing EO and OH against DENV-2 and CHIKV, which were used as surrogate viruses for human pathogenic enveloped viruses. The quantitative suspension test was used. A solution containing 12% EO + 10% OH reduced > 4.0 log10 TCID50 (100% reduction) of both viruses within 1 min of exposure. In addition, solutions containing 12% EO and 3% EO without OH reduced > 4.0 log10 TCID50 of both viruses after 10 min and 30 min of exposure, respectively. The binding affinities of 42 EO compounds and viral envelope proteins were investigated through docking analyses. Sesquiterpene showed the highest binding affinities (from -6.7 to -8.0 kcal/mol) with DENV-2 E and CHIKV E1-E2-E3 proteins. The data provide a first step toward defining the potential of EOs as disinfectants.


Assuntos
Desinfetantes , Óleos Voláteis , Vírus , Humanos , Óleos Voláteis/farmacologia , Desinfetantes/farmacologia , Desinfetantes/química , Antivirais/farmacologia , Etanol
7.
Int J Pharm ; 636: 122790, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36863542

RESUMO

This paper describes the development of a coating for cotton and polypropylene (PP) fabrics based on a polymeric matrix embedded with cuprous oxide nanoparticles (Cu2O@SDS NPs) in order to inactivate SARS-CoV-2 and manufactured by a simple process using a dip-assisted layer-by-layer technology, at low curing temperature and without the need for expensive equipment, capable of achieving disinfection rates of up to 99%. The polymeric bilayer coating makes the surface of the fabrics hydrophilic, enabling the transportation of the virus-infected droplets to achieve the rapid inactivation of SARS-CoV-2 by contact with the Cu2O@SDS NPs incorporated in the coated fabrics.


Assuntos
COVID-19 , Nanopartículas , Humanos , SARS-CoV-2 , COVID-19/prevenção & controle , Têxteis , Polímeros
8.
Viruses ; 15(3)2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36992406

RESUMO

Dengue virus is an important circulating arbovirus in Brazil responsible for high morbidity and mortality worldwide, representing a huge economic and social burden, in addition to affecting public health. In this study, the biological activity, toxicity, and antiviral activity against dengue virus type 2 (DENV-2) of tizoxanide (TIZ) was evaluated in Vero cell culture. TIZ has a broad spectrum of action in inhibiting different pathogens, including bacteria, protozoa, and viruses. Cells were infected for 1 h with DENV-2 and then treated for 24 h with different concentrations of the drug. The quantification of viral production indicated the antiviral activity of TIZ. The protein profiles in infected Vero cells treated and not treated with TIZ were analyzed using the label-free quantitative proteomic approach. TIZ was able to inhibit virus replication mainly intracellularly after DENV-2 penetration and before the complete replication of the viral genome. Additionally, the study of the protein profile of infected not-treated and infected-treated Vero cells showed that TIZ interferes with cellular processes such as intracellular trafficking and vesicle-mediated transport and post-translational modifications when added after infection. Our results also point to the activation of immune response genes that would eventually lead to a decrease of DENV-2 production. TIZ is a promising therapeutic molecule for the treatment of DENV-2 infections.


Assuntos
Vírus da Dengue , Dengue , Chlorocebus aethiops , Animais , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Células Vero , Dengue/tratamento farmacológico , Vírus da Dengue/genética , Proteômica , Replicação Viral
9.
Acta amaz ; 53(2): 158-165, 2023. graf, tab, ilus
Artigo em Inglês | VETINDEX | ID: biblio-1428891

RESUMO

The herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) occur worldwide. Infections caused by these viruses have great public health importance due to the growing resistance to the first-choice drug, acyclovir, especially in immunosuppressed patients. Alkaloids derived from species of Annonaceae have been reported as antiviral agents against HSV and others viruses. Within this context, we evaluated the antiviral activity of the total alkaloid fraction (TAF) extracted from the branches of Fusaea longifolia (Aubl.) Saff. (Annonaceae), a species native to the Amazon region, against the HSV-1 and HSV-2 viruses. The antiviral activity was evaluated through the plate reduction assay and the mode of action was investigated by a set of other assays. The TAF was active against the HSV-2 strain 333 and against the HSV-1 strains KOS and 29R (acyclovir resistant), with selectivity index values (SI = 50% cytotoxic concentration/50% effective concentration) of 5, 4 and 3, respectively. In the preliminary study of the anti-HSV-2 mode of action, TAF showed viral inhibitory effects if added up to 12 h post-infection, had virucidal activity and did not present viral inhibition in pre-treatment. Our results showed that the TAF exhibited anti-HSV activity. Regarding HSV-2, TAF acted after the viral infection and had virucidal activity. A mass spectrometry analysis revealed the presence of nine alkaloids in the TAF that had previously been reported for Annonaceae, including liriodenine, lysicamine and isoboldine, which have been described as potential anti-HSV-1 agents.(AU)


Os vírus herpes simplex tipo 1 (HSV-1) e tipo 2 (HSV-2) têm ampla ocorrência global. As infecções causadas por esses vírus têm grande importância em saúde pública devido à crescente resistência ao fármaco de primeira linha, aciclovir, principalmente em pacientes imunossuprimidos. Alcaloides derivados de espécies de Annonaceae têm sido relatados como agentes antivirais contra o HSV e outros vírus. Neste contexto, nós avaliamos a atividade antiviral da fração alcaloide total (TAF) dos ramos de Fusaea longifolia (Aubl.) Saff. (Annonaceae), uma espécie nativa da região amazônica, contra os vírus HSV-1 e HSV-2. A atividade antiviral foi avaliada através do ensaio de redução em placa e o modo de ação foi investigado por um conjunto de ensaios. O TAF foi ativo contra a cepa HSV-2 333 e contra as cepas HSV-1 KOS e 29R (resistente ao aciclovir), com valores de índice de seletividade (IS = 50% concentração citotóxica/50% concentração efetiva) de 5, 4 e 3, respectivamente. No estudo preliminar do modo de ação da atividade anti-HSV-2, o TAF inibiu a replicação viral quando adicionados até 12 h pós-infecção, apresentou atividade virucida e não apresentou inibição viral no pré-tratamento. Nossos resultados mostraram que o TAF exibiu atividade anti-HSV. Em relação ao HSV-2, o TAF atuou após a infecção viral e apresentou atividade virucida. Uma análise do TAF por espectrometria de massas identificou a presença de nove alcaloides, incluindo liriodenina, lisicamina e isoboldina, que já foram descritos como potenciais agentes anti-HSV-1.(AU)


Assuntos
Simplexvirus/imunologia , Annonaceae/virologia , Alcaloides/efeitos adversos , Antivirais/química
10.
Rev. cuba. med. trop ; 74(3)dic. 2022.
Artigo em Espanhol | LILACS, CUMED | ID: biblio-1449983

RESUMO

Introducción: El virus dengue, transmitido por mosquitos del género Aedes ha reemergido en los últimos años produciendo la enfermedad transmitida por artrópodos con mayor prevalencia en humanos, y no existe una terapia antiviral específica ni vacunas, para su tratamiento y prevención. Ello ha motivado la búsqueda de productos y compuestos naturales con actividad antiviral, lo cual trae consigo la necesidad de establecer un sistema de evaluación de productos naturales y sintéticos mediante una metodología de pesquisa rápida in vitro. Objetivo: Proponer un sistema de pesquisa primaria de actividad antiviral contra el virus dengue basado en células. Métodos: Se utilizaron como fuentes primarias de información trabajos publicados en revistas nacionales e internacionales registradas en las bases de datos SciELO o PubMed. Los ejemplos seleccionados en las figuras y tabla proceden de las publicaciones conjuntas del Grupo de Virología de la Facultad de Biología de la Universidad de La Habana y del Laboratorio de Arbovirus del Instituto de Medicina Tropical Pedro Kourí. Información, análisis y síntesis: Se presentan las principales metodologías basadas en células, y se enfatiza en aquellas asumidas por nuestro grupo (evaluación de la citotoxicidad y el ensayo primario de actividad antiviral). Se muestra el algoritmo de evaluación de un producto. La metodología descrita ha permitido poner en marcha un programa de búsqueda de fármacos antidengue, teniendo en cuenta los criterios de la evaluación de la eficacia antiviral y la toxicidad, para realizar un estudio posterior de mecanismo de acción de los diferentes compuestos o productos evaluados.


Introduction: Dengue virus, transmitted by Aedes specie mosquitos, has re-emerged in the last years causing the arthropod-borne disease with higher prevalence in humans, to which there is no specific antiviral therapy or vaccine for its treatment and prevention. This has motivated the search for natural-based products with antiviral activity, which implies the need to establish an evaluation system of natural and synthetic products through a rapid in vitro screening methodology. Objective: To propose a primary screening cell-based antiviral activity system against dengue virus. Methods: Papers published in national and international journals indexed in SciELO or PubMed were used as primary sources of information. The examples selected in the figures and table were retrieved from the joint publications of the Virology Group of the School of Biology of the University of Havana and the Arbovirus Laboratory of the Institute of Tropical Medicine Pedro Kourí. Information, Analysis and Synthesis: The main cell-based methodologies are presented, with emphasis on those assumed by our research group (evaluation of cytotoxicity and the primary antiviral activity assay). The algorithm for product evaluation is presented. The methodology described has allowed initiating a search program for antidengue drugs, taking into account the criteria for evaluating antiviral efficacy and toxicity, in order to carry out a subsequent study on the mechanisms of action of the different compounds or products evaluated.


Assuntos
Humanos
11.
Phytomedicine ; 106: 154424, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36126544

RESUMO

BACKGROUND: Dengue virus (DENV) is considered one of the most important pathogens in the world causing 390 million infections each year. Currently, the development of vaccines against DENV presents some shortcomings and there is no antiviral therapy available for its infection. An important challenge is that both treatments and vaccines must be effective against all four DENV serotypes. Nordihydroguaiaretic acid (NDGA), isolated from Larrea divaricata Cav. (Zygophyllaceae) has shown a significant inhibitory effect on a broad spectrum of viruses, including DENV serotypes 2 and 4. PURPOSE: We evaluated the in vitro virucidal and antiviral activity of NDGA on DENV serotype 1 (DENV1), including the study of its mechanism of action, to provide more evidence on its antiviral activity. METHODS: The viability of viral particles was quantified by the plaque-forming unit reduction method. NDGA effects on DENV1 genome and viral proteins were evaluated by qPCR and immunofluorescence, respectively. Lysosomotropic activity was assayed using acridine orange and neutral red dyes. RESULTS: NDGA showed in vitro virucidal and antiviral activity against DENV1. The antiviral effect would be effective within the first 2 h after viral internalization, when the uncoating process takes place. In addition, we determined by qPCR that NDGA decreases the amount of intracellular RNA of DENV1 and, by immunofluorescence, the number of cells infected. These results indicate that the antiviral effect of NDGA would have an intracellular mechanism of action, which is consistent with its ability to be incorporated into host cells. Considering the inhibitory activity of NDGA on the cellular lipid metabolism, we compared the antiviral effect of two inhibitors acting on two different pathways of this type of metabolism: 1) resveratrol that inhibits the sterol regulatory element of binding proteins, and 2) caffeic acid that inhibits the 5-lipoxygenase (5-LOX) enzyme. Only caffeic acid produced an inhibitory effect on DENV1 infection. We studied the lysosomotropic activity of NDGA on host cells and found, for the first time, that this compound inhibited the acidification of cell vesicles which would prevent DENV1 uncoating process. CONCLUSION: The present work contributes to the knowledge of NDGA activity on DENV. We describe its activity on DENV1, a serotype different to those that have been already reported. Moreover, we provide evidence on which stage/s of the viral replication cycle NDGA exerts its effects. We suggest that the mechanism of action of NDGA on DENV1 is related to its lysosomotropic effect, which inhibits the viral uncoating process.


Assuntos
Vírus da Dengue , Laranja de Acridina/farmacologia , Antivirais/farmacologia , Araquidonato 5-Lipoxigenase/genética , Ácidos Cafeicos , Corantes/farmacologia , Vírus da Dengue/fisiologia , Masoprocol/farmacologia , Vermelho Neutro/farmacologia , RNA , Resveratrol/farmacologia , Sorogrupo , Esteróis/farmacologia , Proteínas Virais , Replicação Viral
12.
Virol J ; 19(1): 31, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193667

RESUMO

BACKGROUND: The worldwide epidemics of diseases as dengue and Zika have triggered an intense effort to repurpose drugs and search for novel antivirals to treat patients as no approved drugs for these diseases are currently available. Our aim was to screen plant-derived extracts to identify and isolate compounds with antiviral properties against dengue virus (DENV) and Zika virus (ZIKV). METHODS: Seven thousand plant extracts were screened in vitro for their antiviral properties against DENV-2 and ZIKV by their viral cytopathic effect reduction followed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, previously validated for this purpose. Selected extracts were submitted to bioactivity-guided fractionation using high- and ultrahigh-pressure liquid chromatography. In parallel, high-resolution mass spectrometric data (MSn) were collected from each fraction, allowing compounds into the active fractions to be tracked in subsequent fractionation procedures. The virucidal activity of extracts and compounds was assessed by using the plaque reduction assay. EC50 and CC50 were determined by dose response experiments, and the ratio (EC50/CC50) was used as a selectivity index (SI) to measure the antiviral vs. cytotoxic activity. Purified compounds were used in nuclear magnetic resonance spectroscopy to identify their chemical structures. Two compounds were associated in different proportions and submitted to bioassays against both viruses to investigate possible synergy. In silico prediction of the pharmacokinetic and toxicity (ADMET) properties of the antiviral compounds were calculated using the pkCSM platform. RESULTS: We detected antiviral activity against DENV-2 and ZIKV in 21 extracts obtained from 15 plant species. Hippeastrum (Amaryllidaceae) was the most represented genus, affording seven active extracts. Bioactivity-guided fractionation of several extracts led to the purification of lycorine, pretazettine, narciclasine, and narciclasine-4-O-ß-D-xylopyranoside (NXP). Another 16 compounds were identified in active fractions. Association of lycorine and pretazettine did not improve their antiviral activity against DENV-2 and neither to ZIKV. ADMET prediction suggested that these four compounds may have a good metabolism and no mutagenic toxicity. Predicted oral absorption, distribution, and excretion parameters of lycorine and pretazettine indicate them as candidates to be tested in animal models. CONCLUSIONS: Our results showed that plant extracts, especially those from the Hippeastrum genus, can be a valuable source of antiviral compounds against ZIKV and DENV-2. The majority of compounds identified have never been previously described for their activity against ZIKV and other viruses.


Assuntos
Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Animais , Antivirais/química , Chlorocebus aethiops , Dengue/tratamento farmacológico , Humanos , Células Vero
13.
Int Immunopharmacol ; 106: 108573, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35183035

RESUMO

Human respiratory syncytial virus (hRSV) is an infectious agent in infants and young children which there are no vaccines or drugs for treatment. Neutrophils are recruited for airway, where they are stimulated by hRSV to release large amounts of neutrophil extracellular traps (NETs). NETs are compound by DNA and proteins, including microbicidal enzymes. They constitute a large part of the mucus accumulated in the lung of patients, compromising their breathing capacity. In contrast, NETs can capture/inactivate hRSV, but the molecules responsible for this effect are unknown. OBJECTIVES: We selected microbicidal NET enzymes (elastase, myeloperoxidase, cathepsin-G, and proteinase-3) to assess their anti-hRSV role. METHODS AND RESULTS: Through in vitro assays using HEp-2 cells, we observed that elastase, proteinase-3, and cathepsin-G, but not myeloperoxidase, showed virucidal effects even at non-cytotoxic concentrations. Elastase and proteinase-3, but not cathepsin-G, cleaved viral F-protein, which is responsible for viral adhesion and fusion with the target cells. Molecular docking analysis indicated the interaction of these macromolecules in the antigenic regions of F-protein through the active regions of the enzymes. CONCLUSIONS: Serine proteases from NETs interact and inactive hRSV. These results contribute to the understanding the role of NETs in hRSV infection and to designing treatment strategies for the inflammatory process during respiratory infections.


Assuntos
Armadilhas Extracelulares , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Serina Proteases , Armadilhas Extracelulares/enzimologia , Humanos , Simulação de Acoplamento Molecular , Infecções por Vírus Respiratório Sincicial/metabolismo , Serina Proteases/metabolismo
14.
J Photochem Photobiol ; 8: 100068, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34549200

RESUMO

A significant amount of epidemiological evidence has underlined that human-to-human transmission due to close contacts is considered the main pathway of transmission, however since the SARS-CoV-2 can also survive in aerosols, water, and surfaces, the development and implementation of effective decontamination strategies are urgently required. In this regard, ultraviolet germicidal irradiation (UVGI) using ultraviolet C (UVC) has been proposed to disinfect different environments and surfaces contaminated by SARS-CoV-2. Herein, we performed a systematic scoping review strictly focused on peer-reviewed studies published in English that reported experimental results of UVC-based technologies against the SARS-CoV-2 virus. Studies were retrieved from PubMed and the Web of Science database. After our criterious screening, we identified 13 eligible articles that used UVC-based systems to inactivate SARS-CoV-2. We noticed the use of different UVC wavelengths, technologies, and light doses. The initial viral titer was also heterogeneous among studies. Most studies reported virus inactivation in well plates, even though virus persistence on N95 respirators and different surfaces were also evaluated. SARS-CoV-2 inactivation reached from 90% to 100% depending on experimental conditions. We concluded that there is sufficient evidence to support the use of UVC-based technologies against SARS-CoV-2. However, appropriate implementation is required to guarantee the efficacy and safety of UVC strategies to control the COVID-19 pandemic.

15.
Beilstein J Nanotechnol ; 12: 440-461, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104622

RESUMO

Recent studies with silver nanoparticles (AgNPs) and the history of silver metal as a broad-spectrum bactericidal and virucidal agent, places silver as one of the future biocidal candidates in the field of nanomedicine to eliminate bacteria and viruses, especially multidrug resistant ones. In this review, we have described the various morphologies of AgNPs and correlated the enhanced bactericidal activity with their prominent {111} facets. In addition to prioritizing the characterization we have also discussed the importance of quantifying AgNPs and silver ion content (Ag+) and their different mechanisms at the chemical, biological, pharmacological, and toxicological levels. The mechanism of action of AgNPs against various bacteria and viruses including the SARS-CoV-2 was analyzed in order to understand its effectiveness as an antimicrobial agent with therapeutic efficacy and low toxicity. Further, there is the need to characterize AgNPs and quantify the content of free Ag+ for the implementation of new systematic studies of this promising agent in nanomedicine and in clinical practice.

16.
Front Microbiol ; 12: 809296, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095816

RESUMO

The pharmaceutical industry is currently trying to develop new bioactive compounds to inactivate both enveloped and non-enveloped viruses for therapeutic purposes. Consequently, microalgal and macroalgal bioactive compounds are being explored by pharmaceutical, as well as biotechnology and food industries. In this review, we show how compounds produced by algae include important candidates for viral control applications. We discuss their mechanisms of action and activity against enveloped and non-enveloped viruses, including those causing infections by enteric, parenteral, and respiratory routes. Indeed, algal products have potential in human and animal medicine.

17.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;54(7): e10240, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1249316

RESUMO

Dengue is the most important arthropod-borne viral disease worldwide. Infection with any of the four dengue virus (DENV) serotypes can be asymptomatic or lead to disease with clinical symptoms ranging from undifferentiated and self-limiting fever to severe dengue disease, which can be fatal in some cases. Currently, no specific antiviral compound is available for treating DENV. The aim of this study was to identify compounds in plants from Paraguayan folk medicine with inhibitory effects against DENV. We found high virucidal activity (50% maximal effective concentration (EC50) value of 24.97 µg/mL) against DENV-2 in the ethanolic extract of the roots of Solanum sisymbriifolium Lam. (Solanaceae) without an evident cytotoxic effect on Vero E6 cells. Three saponins isolated from the root extract showed virucidal effects (EC50 values ranging from 24.9 to 35.1 µg/mL) against DENV-2. Additionally, the saponins showed inhibitory activity against yellow fever virus (EC50 values ranging from 126 to 302.6 µg/mL), the prototype virus of the Flavivirus genus, suggesting that they may also be effective against other members of this genus. Consequently, these saponins may be lead compounds for the development of antiviral agents.


Assuntos
Saponinas/farmacologia , Solanum , Vírus da Dengue , Antivirais/farmacologia , Replicação Viral , Vírus da Febre Amarela
18.
Viruses ; 11(12)2019 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-31801280

RESUMO

Measles virus (MeV) is a paramyxovirus that infects humans, principally children. Despite the existence of an effective and safe vaccine, the number of cases of measles has increased due to lack of vaccination coverage. The World Health Organization (WHO) reports that the number of cases worldwide multiplied fourfold between January and March 2019, to 112,000. Today, there is no treatment available for MeV. In recent years, it has been demonstrated that natural extracts (herbal or algal) with antiviral activity can also work as reducing agents that, in combination with nanotechnology, offer an innovative option to counteract viral infections. Here, we synthetized and evaluated the antiviral activity of gold nanoparticles using garlic extract (Allium sativa) as a reducing agent (AuNPs-As). These nanoparticles actively inhibited MeV replication in Vero cells at a 50% effective concentration (EC50) of 8.829 µg/mL, and the selectivity index (SI) obtained was 16.05. AuNPs-As likely inhibit viral infection by blocking viral particles directly, showing a potent virucidal effect. Gold nanoparticles may be useful as a promising strategy for treating and controlling the infection of MeV and other related enveloped viruses.


Assuntos
Antivirais/farmacologia , Alho/química , Ouro/farmacologia , Vírus do Sarampo/efeitos dos fármacos , Sarampo/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Antivirais/química , Chlorocebus aethiops , Ouro/química , Humanos , Sarampo/virologia , Vírus do Sarampo/ultraestrutura , Extratos Vegetais/química , Células Vero
19.
Viruses ; 10(9)2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30200234

RESUMO

Although preventable by vaccination, Measles still causes thousands of deaths among young children worldwide. The discovery of new antivirals is a good approach to control new outbreaks that cause such death. In this study, we tested the antiviral activity against Measles virus (MeV) of Polyphenol-rich extracts (PPs) coming from five seaweeds collected and cultivated in Mexico. An MTT assay was performed to determine cytotoxicity effect, and antiviral activity was measured by syncytia reduction assay and confirmed by qPCR. PPs from Ecklonia arborea (formerly Eisenia arborea, Phaeophyceae) and Solieria filiformis (Rhodophyta) showed the highest Selectivity Index (SI), >3750 and >576.9 respectively. Both PPs extracts were selected to the subsequent experiments owing to their high efficacy and low cytotoxicity compared with ribavirin (SI of 11.57). The combinational effect of PPs with sulphated polysaccharides (SPs) and ribavirin were calculated by using Compusyn software. Synergistic activity was observed by combining both PPs with low concentrations of Solieria filiformis SPs (0.01 µg/mL). The antiviral activity of the best combinations was confirmed by qPCR. Virucidal assay, time of addition, and viral penetration evaluations suggested that PPs act mainly by inactivating the viral particle. To our knowledge, this is the first report of the virucidal effect of Polyphenol-rich extracts of seaweeds.


Assuntos
Antivirais/farmacologia , Sinergismo Farmacológico , Vírus do Sarampo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Alga Marinha/química , Animais , Antivirais/isolamento & purificação , Antivirais/toxicidade , Chlorocebus aethiops , México , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Polifenóis/isolamento & purificação , Polifenóis/toxicidade , Polissacarídeos/farmacologia , Ribavirina/farmacologia , Células Vero
20.
Pesqui. vet. bras ; 37(7): 667-675, jul. 2017. tab, graf
Artigo em Português | VETINDEX | ID: vti-13022

RESUMO

Dentre as propriedades biológicas da própolis, a atividade antimicrobiana tem merecido destacada atenção. No presente trabalho, descreve-se a ação antiviral e virucida de três extratos hidroalcoólicos de própolis (marrom, verde e de abelhas jataí (Tetragonisca angustula), frente ao Herpesvírus Bovino tipo (BoHV-1) e ao Vírus da Diarreia Viral Bovina (BVDV). Os três extratos hidroalcoólicos foram obtidos de extração etanólica e são oriundos do sul do Brasil. A composição química dos extratos de própolis foi determinada pela cromatografia líquida de alta eficiência acoplada a espectrômetro de massas (UFLC-PDA-ESI-TOF/MS) que identificou e quantificou compostos como: ácido cafeico e ácido p-cumárico, ácido clorogênico, ácido ferúlico, além de flavonoides como a rutina. A toxicidade celular bem como a atividade antiviral dos extratos de própolis em monocamadas de células MDBK (Madin-Darby Bovine Kidney) foi avaliada através de observação microscópica e quantificada pelo teste de MTT (3-(4,5 dimetiltiazol-2yl)-2-5-difenil-2H tetrazolato de bromo). O extrato de própolis de abelhas jataí demonstrou ser menos citotóxico (1,57µg/mL), quando comparado aos extratos verde (0,78µg/mL) e marrom (0,39µg/mL). Quanto a atividade antiviral, a própolis verde demostrou maior eficácia em ambos os tratamentos celulares (pós e pré-exposição) frente ao BoHV-1 em relação aos outros extratos, ou seja, houve maior viabilidade celular quando comparada aos controles de células e vírus. Já a de jataí apresentou atividade frente aos dois vírus (BoHV-1 e BVDV) no método pré-infecção, enquanto a própolis marrom demonstrou ação apenas frente ao BoHV-1 também no método pré-infecção. Para determinação da atividade virucida foram utilizadas diferentes diluições dos vírus, bem como temperaturas e tempos distintos de incubação. A própolis verde a 37°C propiciou a maior redução no título viral (4,33log) em relação a marrom (log = 3,5log) e de jataí (log = 3,24log). No entanto, frente ao BVDV a própolis jataí apresentou os melhores resultados em ambas as temperaturas (22oC e 37oC). Portanto, os extratos avaliados apresentaram atividade antiviral e virucida frente ao BoHV-1 e BVDV, o que os torna alvo para o desenvolvimento de novos biofármacos como alternativa ao uso de antivirais comerciais em Medicina Veterinária.(AU)


Among the biological properties of propolis, the antimicrobial activity has received prominent attention. In this paper, we describe the antiviral and virucidal effect of three hydroalcoholic extracts of propolis (brown, green and jataí bees (Tetragonisca angustula), against bovine herpesvirus type-1 (BoHV-1) and bovine viral diarrhea Virus (BVDV). All hydroalcoholic extracts were obtained from ethanol extraction. The chemical composition of propolis extracts was determined by high-performance liquid chromatography coupled to mass spectrometer (UFLC-PDA-ESI-TOF/MS) to identify and quantify compounds such as caffeic acid and p-coumaric acid, chlorogenic acid, ferulic, and flavonoids such as rutin. Cell toxicity and antiviral activity of propolis extracts in monolayers of MDBK cells (Madin-Darby Bovine Kidney) were assessed by microscopic observation and quantified by the MTT assay (3- (4.5 dimethylthiazol-2yl) -2- 5-diphenyl-2H-tetrazolato bromine). Propolis extract from Jataí bees proved to be less cytotoxic (1.57mg / ml) when compared to green extracts (0.78mg / ml) and brown (0.39mg/mL). Regarding antiviral activity, propolis has shown greater efficacy in both cellular treatments (post and pre-exposure) against BoHV-1 when compared to other extracts, ie, there was increased cell viability compared to cell and virus controls. Extracts from Jataí showed activity against both viruses (BoHV-1 and BVDV) infection in the pre-test, whereas brown propolis demonstrated action only against the BoHV-1 in the pre-infection method. To determine the virucidal activity, it were used different dilutions of virus, as well as different temperatures and incubation times. The green propolis at 37°C led to a greater reduction in viral titer (4.33log) compared to brown (3.5log) and jataí (3.24log). Jataí propolis showed the best results in both temperatures (22oC and 37oC) when tested against BVDV. In summary, the evaluated extracts showed antiviral and virucidal activity against BoHV-1 and BVDV, and may be important targets for the development of new compounds as an alternative to commercial antivirals.(AU)


Assuntos
Animais , Bovinos , Antivirais/uso terapêutico , Própole/uso terapêutico , Infecções por Herpesviridae/terapia , Herpesvirus Bovino 1 , Vírus da Diarreia Viral Bovina Tipo 1 , Abelhas , Solução Hidroalcoólica , Citotoxinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA