RESUMO
This study aimed to investigate the effects of acid or alkali modification of isolated cassava starch (ICS) on its physicochemical properties. Acetic acid concentrations of 5%, 10%, and 20% v/v (0.87, 1.73, and 3.46 M, respectively) and calcium hydroxide concentrations of 0.15%, 0.20%, and 0.30% w/w (0.02, 0.025, and 0.04 M, respectively) were tested independently and compared with untreated isolated starch. The scanning electron microscope (SEM) shows starches with polyhedral and semispherical shapes; these modifications do not change the surface of the starch granules. Nanocrystals with orthorhombic crystal structure were extracted from ICS. Transmission electron microscopy (TEM) shows crystallites with a size (two-dimensional) of 20 ± 5 nm in length and 10 ± 2 nm in width and reveals that this starch contains nanocrystals with orthorhombic crystal structure. The X-ray patterns show that these nanocrystals are unaffected by acidic or alkaline treatments. The Ca+2 and CH3COO- ions do not interact with these nanocrystals. The alkaline treatment only affects the gelatinization temperature at a Ca(OH)2 concentration of 0.30%. Low concentrations of acidic and alkaline treatments affect the ability of cassava starch to absorb water and reduce the peak and final viscosity. The infrared spectra show that the modifications lead to C-H and CâC bond formations. ICS-B 0.30 can modify the amorphous regions of the starch, and the acid treatment leads to acetylation, which was confirmed by the presence of an IR band at 1740 cm-1.
Assuntos
Manihot , Reologia , Amido , Manihot/química , Amido/química , Concentração de Íons de Hidrogênio , Difração de Raios X , Microscopia Eletrônica de Varredura , Ácido Acético/química , Nanopartículas/química , Hidróxido de Cálcio/química , Viscosidade , Microscopia Eletrônica de TransmissãoRESUMO
The 1-acyl thiourea family [R1C(O)NHC(S)NR2R3] exhibits the flexibility to incorporate a wide variety of substituents into their structure. The structural attributes of these compounds are intricately tied to the type and extent of substitution. In the case of 3-mono-substituted thioureas (R2=H), the conformational behavior is predominantly shaped by the presence of an intramolecular N-H â â â O=C hydrogen bond. This study delves into the structural consequences stemming from the inclusion of substituents possessing hydrogen-donor capabilities within four novel 1-acyl-3-mono-substituted thiourea derivatives. A comprehensive suite of analytical techniques, encompassing FTIR, Raman spectroscopy, multinuclear (1H and 13C) NMR spectroscopy, single-crystal X-ray diffraction, and supported by computational methods, notably NBO (Natural Bond Orbital) population analysis, Hirshfeld analysis, and QTAIM (Quantum Theory of Atoms in Molecules), was harnessed to scrutinize and characterize these compounds. In the crystalline state, these compounds exhibit an intricate interplay of intermolecular interactions, prominently featuring an expansive network of hydrogen bonds between the hydroxy (-OH) groups and the carbonyl and thiocarbonyl bonds within the 1-acyl thiourea fragment. Notably, the topological analysis underscores significant distinctions in the properties of the acyl thiourea fragment and the intramolecular >C=O â â â H-N bond when transitioning from the isolated molecule to the crystalline environment.
RESUMO
This dataset provides a comprehensive collection of vibrational data for the purpose of structural health monitoring, particularly focusing on the detection of bolt loosening in offshore wind turbine jacket foundations. The data set comprises 780 comma-separated values (CSV) files, each corresponding to specific experimental conditions, including various structural states of the wind turbine's support structure. These states are systematically varied considering three main aspects: the amplitude of a white noise (WN) signal, the type of bolt damage, and the level at which damage has occurred. The data were meticulously collected using eight triaxial accelerometers (PCB R Piezotronic model 356A17), strategically placed at different locations on a scaled-down replica of an offshore jacket-type wind turbine. This setup facilitated the acquisition of detailed vibrational data through a National Instruments' data acquisition (DAQ) system, comprising six input modules (NI 9234 model) housed in a chassis (cDAQ model). The white noise signal, simulating wind disturbance at the nacelle, was produced by a modal shaker and varied in three amplitudes (0.5, 1, and 2), directly proportional to the induced vibration in the wind turbine. The dataset uniquely captures the vibrational behaviour under different scenarios of bolt loosening in the turbine's foundation. The conditions include a healthy state (bolts tightened to 12 Nm) and various degrees of loosening (bolts loosened to 9 Nm, 6 Nm, and completely absent), examined at four distinct levels of the turbine's base structure. This granular approach offers a nuanced view of how varying degrees of bolt loosening impact the vibrational characteristics of the structure. The value of this dataset lies in its potential for wide-ranging applications in the field of structural health monitoring. Researchers and engineers can leverage this data for developing and testing new methodologies for early damage detection and progressive damage assessment in offshore wind turbines. The dataset's comprehensive coverage of damage scenarios makes it a valuable resource for the validation and enhancement of existing damage detection algorithms. Furthermore, the dataset can serve as a benchmark for comparing the efficacy of different vibrational analysis techniques in the context of wind turbine maintenance and safety. Its application is not only limited to wind turbines but can extend to other structures where bolt integrity is critical for operational safety. This dataset represents a significant contribution to the field of structural health monitoring, providing a detailed and practical resource for enhancing the reliability and safety of offshore wind turbines and similar structures.
RESUMO
In this research, a combined study on structures and vibrational spectra of antiviral rimantadine have been performed using hybrid B3LYP/6-311++G∗∗ calculations and the scaled quantum force field (SQMFF) procedure. Harmonic force fields and scaled force constants of Free Base (FB), Cationic (CA) and Hydrochloride (HCl) species derived from the antiviral rimantadine have been calculated in gas phase and in aqueous solution using normal internal coordinates and scaling factors. Good correlations were acquired comparing the theoretical IR, Raman, 1H- 13C-NMR and UV spectra of three species with the analogous experimental ones, suggesting probably, the presence of all them in both phases. The main force constants of three species have evidenced lower values than the corresponding to antiviral amantadine. The ionic character of N1-H33â¯Cl36 bond of HCl species in aqueous solution evidence positive Mulliken charge on N1 atom indicating that this species is as CA one. Rimantadine presents higher solvation energies in water than other antiviral species, such as chloroquin, niclosamide, cidofovir and brincidofovir. The FB and HCl species of rimantadine are slightly less reactive than the corresponding to amantadine while the opposite is observed for the CA species. The predicted ECD spectra for the FB and CA species show positive Cotton effect different from the negative observed for the HCl one. These different behaviours of three species of rimantadine could probably explain the differences observed in the intensities of bands predicted in the electronic spectra of these species.
RESUMO
The compound 1,3,3-trimethyl-2-oxabicyclo[2.2.2]octan-9-ol (9-hydroxyeucaliptol) has been prepared and characterized by single-crystal X-ray diffraction analysis, infrared, Raman, and UV-visible spectroscopies. The molecular geometry of the title compound was also investigated theoretically by density functional theory (DFT) calculations to compare with the experimental data. The substance crystallizes in the trigonal crystal system, space group P32 with Z = 9 molecules per unit cell. There are three independent molecules in the crystal asymmetric unit having the same chirality and showing some differences in the orientation of the H-atom of the hydroxyl group. The crystal structure of 9-hydroxyeucaliptol shows that the hydroxyl group presents an anti-conformation with respect to the O-atom of the ether group. The crystal packing of 9-hydroxyeucaliptol is stabilized by intermolecular O-H···O hydrogen bonds involving the hydroxyl groups of different molecules, which play a decisive role in the preferred conformation adopted in solid state. The intermolecular interactions observed in solid state were also studied through the Hirshfeld surface analysis and quantum theory of atoms in molecules (QTAIM) approaches. Energy framework calculations have also been carried out to analyze and visualize the topology of the supramolecular assembly, and the results indicate a significant contribution from electrostatic energy over the dispersion.
RESUMO
A molecular modeling study of symmetrical conformers of α-, ß-, and γ-cyclodextrins in the gas and aqueous phases was carried out using the M06-2X density functional method, with SMD employed as an implicit solvation model. Eight symmetrical conformers were found for each cyclodextrin. Values of geometrical parameters obtained from the modeling study were found to agree well with those obtained from X-ray diffraction structures. A vibrational analysis using harmonic frequencies was performed to determine thermodynamic quantities. The GIAO method was applied to determine proton and carbon-13 NMR chemical shifts, which were then compared with corresponding chemical shifts reported in the literature. Hydrogen-bonding patterns were analyzed using geometrical descriptors, and quantum chemical topology was explored by QTAIM analysis. The results of this study indicated that four of the eight conformers studied for each cyclodextrin are the most populated in aqueous solution. These results provide the foundations for future studies of host-guest complexes involving these cyclodextrins. Graphical abstract δΔGsolvation: variation of free Gibss energy of solvation.