Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Res Food Sci ; 7: 100612, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868001

RESUMO

Protein concentrates obtained from discarded grain flours of white chickpea Sinaloa (Cicer arietinum) (CC), "Azufrazin" bean (Phaseolus vulgaris) (BC), and white corn (Zea mays) (MC), were characterized biochemically through bromatological analyses (protein, lipid, fiber, moisture, ashes, and nitrogen free extract), HPLC techniques (amino acids content), and spectrophotometry (anti-nutrients: phytic acid, trypsin inhibitors, and saponins). The percentage of protein obtained from CC, BC, and MC was 71.23, 81.10, and 55.69%, respectively. Most peptides in the BC and CC flours had a molecular weight of <1.35 kDa, meanwhile, MC peptides were heavier (1.35 to 17 kDa). The amino acids (AA) profile of flours and protein concentrates were similar; however, all the protein concentrates showed an increased AA accumulation (300 to -400%) compared with their flours. The protein concentrates from BC registered the highest AA accumulation (77.4 g of AA/100 g of protein concentrates). Except for the phytic acid in CC and trypsin inhibitor in CC and MC, respectively, the rest of the protein concentrates exhibited higher amounts of the anti-nutrients compared with their flours; however, these levels do not exceed the reported toxicity for some animals, mainly when used in combination with other ingredients for feed formulations. It is concluded that CC and BC protein concentrates showed better nutritional characteristics than MC (level of protein, size of peptides, and AA profile). After biochemical characterization, protein concentrates derived from by-products have nutritional potential for the animal feed industry.

2.
Foods ; 10(10)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34681320

RESUMO

Quick meals available in markets are popular among consumers. Generally, these products are not recognized as functional foods owing to nutrient-poor composition. In this study, energy snack bars were developed with different formulations, using puffed quinoa, amaranth, cacao liquor, and coconut oil, and the effects of the addition of commercial vegetal mixtures (VM) on nutritional and functional properties were assessed. VM addition showed significant effects on the protein, lipid, and fiber contents, phenolic compounds (PHC) content, and antioxidant activity of the snacks. The control snack showed higher levels of free and bound PHC. The oxygen radical absorbance capacity (ORAC) analyses recorded highest values of free PHC (9392.7 µmol TE/100 g dry weight) in PC65 (concentrate based on a combination of vegetal proteins), whereas the highest bound PHC levels of 47,087 and 46,531 µmol TE/100 g dry weight were observed in PC65 and the control snacks, respectively. Sensorial attributes assessment provided a high score on the hedonic scale, wherein panelists detected no differences among the samples. Altogether, the selection of non-conventional ingredients with high antioxidant activities emerged as a successful strategy to produce sensory acceptable meals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA