Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
J Sci Food Agric ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39139024

RESUMO

BACKGROUND: Protein-derived peptide fractions can play a key role in the physiological and metabolic regulation and modulation of the body, which suggests that they could be used as functional ingredients to improve health and to reduce the risk of disease. This work aimed to evaluate the in vitro antithrombotic and anticariogenic bioactivity of hydrolysates and protein fractions obtained from cowpea (Vigna unguiculata) by biocatalysis. RESULTS: Cowpea protein concentrate was hydrolyzed by sequential action with two enzyme systems, Pepsin-Pancreatin or Alcalase-Flavourzyme. There was extensive enzymatic hydrolysis, with degrees of hydrolysis of 34.94% and 81.43% for Pepsin-Pancreatin and Alcalase-Flavourzyme, respectively. The degree of hydrolysis for the control treatments, without the addition of the enzymes Pepsin-Pancreatin and Alcalase-Flavourzyme was 1.1% and 1.2%, respectively. The hydrolysates were subjected to fractionation by ultrafiltration, with five cut-off points according to molecular weight (<1, 1-3, 3-5, 5-10 and >10 kDa). The Alcalase-Flavourzyme hydrolysate led to 100% inhibition of platelet aggregation, while the Pepsin-Pancreatin hydrolysate showed 77.41% inhibition, but this was approximately 100% in the ultrafiltered fractions. The highest anticariogenic activity was obtained with the Pepsin-Pancreatin system, with 61.55% and 56.07% for calcium and phosphorus demineralization, respectively. CONCLUSION: Hydrolysates and their peptide fractions from Vigna unguiculata exhibited inhibition of platelet aggregation and protection of tooth enamel and have the potential for use in the development of functional products with beneficial health effects. © 2024 Society of Chemical Industry.

2.
Int J Biol Macromol ; 275(Pt 1): 133567, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38950799

RESUMO

The purpose of this research was to evaluate the efficacy of sodium lignosulfonate (LS) as a dye adsorbent in the removal of methylene blue (MB) from water by polymer-enhanced ultrafiltration. Various parameters were evaluated, such as membrane molecular weight cut-off, pH, LS dose, MB concentration, applied pressure, and the effect of interfering ions. The results showed that the use of LS generated a significant increase in MB removal, reaching an elimination of up to 98.0 % with 50.0 mg LS and 100 mg L-1 MB. The maximum MB removal capacity was 21 g g-1 using the enrichment method. In addition, LS was reusable for up to four consecutive cycles of dye removal-elution. The removal test in a simulated liquid industrial waste from the textile industry was also effective, with a MB removal of 97.2 %. These findings indicate that LS is highly effective in removing high concentrations of MB dye, suggesting new prospects for its application in water treatment processes.


Assuntos
Lignina , Azul de Metileno , Ultrafiltração , Poluentes Químicos da Água , Purificação da Água , Azul de Metileno/química , Lignina/química , Lignina/análogos & derivados , Ultrafiltração/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Corantes/química , Corantes/isolamento & purificação , Adsorção , Polímeros/química
3.
Environ Sci Pollut Res Int ; 31(23): 34309-34323, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38698097

RESUMO

Droughts are becoming more intense and frequent in the Brazilian semiarid because of El Niño and global climate changes. The Jaguaribe River estuary is a semiarid ecosystem that experiences a reduction in freshwater discharges due to droughts and river damming. The decrease in freshwater fluxes has increased metal availability through the water residence time increase in the Jaguaribe River estuary. Then, this study aimed to evaluate the dissolved organic matter quality and its interaction with metals in the Jaguaribe River estuary after a severe drought period. It was performed through carbon analyses, fluorescence spectroscopy, ultrafiltration technique, and determinations of metals by ICP-MS. Optical analysis showed that the dissolved organic carbon (DOC) was preponderantly composed of terrestrial-derived humic compounds, while the low ratio between the particulate organic carbon (POC) and chlorophyll-a indicated that POC was predominantly phytoplankton-derived. DOC and POC presented non-conservative removal during the estuarine mixing. DOM and dissolved elements were mostly distributed within the LMW fraction and presented a low percentage in the colloidal fraction. Li, Rb, Sr, Mo, and U showed conservative behavior, while Cu, Fe, Cr, and V had non-conservative behavior with a significant positive correlation with DOM, suggesting DOM as a relevant driver of metal availability at the Jaguaribe River estuary even during the rainy season.


Assuntos
Monitoramento Ambiental , Estuários , Metais , Poluentes Químicos da Água , Brasil , Metais/análise , Poluentes Químicos da Água/análise , Rios/química , Substâncias Húmicas
4.
Food Chem ; 451: 139396, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38670027

RESUMO

In the coffee industry, the use of natural coffee extracts with differentiated attributes is desirable to drive new product development. This study evaluates the impact of ultrafiltration membrane processing on the sensory, metabolic, and physicochemical attributes of four commercially available coffee extracts: cold brew, lightly roasted, freeze concentrated and evaporated standard. The sensory analysis revealed an increase in acidity in the permeate across all extracts, with the most significant profile changes observed in the lightly roasted evaporated and evaporated extracts, accompanied by an enhancement of fruity and floral attributes. Furthermore, the permeate showed reduced total dissolved solids, while the caffeine concentration increased. Metabolomic analysis highlighted key coffee-related metabolites like cinnamic and coumaric acids, explaining observed variations due to their passage through the membrane. Our findings emphasize the potential of permeate as a coffee-based ingredient for ready-to-drink products development, providing a unique coffee experience with organoleptic profiles distinct from traditional beverages.


Assuntos
Coffea , Café , Extratos Vegetais , Paladar , Ultrafiltração , Extratos Vegetais/química , Café/química , Coffea/química , Humanos , Manipulação de Alimentos , Cafeína/análise , Cafeína/metabolismo
5.
Heliyon ; 9(11): e21938, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027992

RESUMO

Canola (Brassica napus L.) meal represents a prominent alternative plant-based source for protein isolation. This work aimed to investigate the combined effect of extraction and purification methods for the production of canola protein isolates (CPIs). CPIs were characterized in terms of process yield, protein recovery, basic composition, amino acid profile, in vitro protein digestibility, techno-functional properties, structural properties, and molecular features. The results showed that the Alk-Uf method enhanced yield (16.23 %) and protein recovery (34.88 %). Meanwhile, the Et-Alk-Uf method exhibited the highest crude protein (89.71 %) and free amino nitrogen (4.34 mg g protein-1) contents. Furthermore, protein digestibility (95.5 %) and protein digestibility corrected amino acid score (1.0) were improved using the Et-Alk-Ac method. Conversely, the amino acid composition, secondary structure, and electrophoretic profiles were generally similar for all CPIs. The Alk-Uf and Et-Alk-Uf methods produced isolates with the highest water solubility (∼39.18 %), water absorption capacity (∼3.86 g water g protein-1), oil absorption capacity (∼2.77 g oil g protein-1), and foaming capacity (∼505.26 %). Finally, the foaming stability (93.75 %) and foaming density (34.38 %) were increased when employing the Alk-Ac method. These findings suggest that, in general, the Alk-Uf and Et-Alk-Uf methods can be used to obtain CPIs with high added value for use in food formulations.

6.
Membranes (Basel) ; 13(10)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37888000

RESUMO

The presence of antibiotics in aquatic systems in recent years has become a global environmental and public health concern due to the appearance of strains resistant to these antibiotics. Oxytetracycline (OXT) is a high-impact antibiotic used for both human and veterinary consumption, and it is the second most used antibiotic in aquaculture in Chile. Based on the above, this problem is addressed using a linear polymer whose structure is composed of aromatic rings and quaternary ammonium groups, which will help enhance the removal capacity of this antibiotic. To obtain the polycation, a radical polymerization synthesis was carried out using (4-vinylbenzyl)-trimethylammonium chloride as the monomer. The polycation was characterized via Fourier Transform Infrared spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR). The removal studies were conducted under different experimental conditions such as pH levels (3.0, 5.0, 7.0, 8.0, and 11.0), ionic strength (0.0-0.50 mg L-1 of NaCl), polymer dose (0.25-25.5 mg), variation of the antibiotic concentration (1-100 mg L-1), and evaluation of the maximum retention capacity, as well as load and discharge studies. The antibiotic retention removal was higher than 80.0%. The antibiotic removal performance is greatly affected by the effect of pH, ionic strength, molar ratio, and/or OXT concentration, as these parameters directly affect the electrostatic interactions between the polymer and the antibiotics. The diafiltration technique was shown to be highly efficient for the removal of OXT, with maximum removal capacities of 1273, 966, and 778 mg OXT g-1 polycation. In conclusion, it can be said that coupling water-soluble polymers to the diafiltration technique is an excellent low-cost way to address the problem of antibiotics in aquatic systems.

7.
Polymers (Basel) ; 15(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37571079

RESUMO

Emerging antibiotic contaminants in water is a global problem because bacterial strains resistant to these antibiotics arise, risking human health. This study describes the use of poly[(4-vinylbenzyl) trimethylammonium chloride] and N-alkylated chitosan, two cationic polymers with different natures and structures to remove nalidixic acid. Both contain ammonium salt as a functional group. One of them is a synthetic polymer, and the other is a modified artificial polymer. The removal of the antibiotic was investigated under various experimental conditions (pH, ionic strength, and antibiotic concentration) using the technique of liquid-phase polymer-based retention (LPR). In addition, a stochastic algorithm provided by Fukui's functions is used. It was shown that alkylated N-chitosan presents 65.0% removal at pH 7, while poly[(4-vinylbenzyl)trimethylammonium chloride] removes 75.0% at pH 9. The interaction mechanisms that predominate the removal processes are electrostatic interactions, π-π interactions, and hydrogen bonding. The polymers reached maximum retention capacities of 1605 mg g-1 for poly[(4-vinylbenzyl) trimethylammonium chloride] and 561 mg g-1 of antibiotic per gram for alkylated poly(N-chitosan). In conclusion, the presence of aromatic groups improves the capacity and polymer-antibiotic interactions.

8.
Membranes (Basel) ; 13(8)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37623804

RESUMO

The present work investigates nanofiltration (NF) and ultrafiltration (UF) for the removal of three widely used pharmaceutically active compounds (PhACs), namely atenolol, sulfamethoxazole, and rosuvastatin. Four membranes, two polyamide NF membranes (NF90 and NF270) and two polyethersulfone UF membranes (XT and ST), were evaluated in terms of productivity (permeate flux) and selectivity (rejection of PhACs) at pressures from 2 to 8 bar. Although the UF membranes have a much higher molecular weight cut-off (1000 and 10,000 Da), when compared to the molecular weight of the PhACs (253-482 Da), moderate rejections were observed. For UF, rejections were dependent on the molecular weight and charge of the PhACs, membrane molecular weight cut-off (MWCO), and operating pressure, demonstrating that electrostatic interactions play an important role in the removal of PhACs, especially at low operating pressures. On the other hand, both NF membranes displayed high rejections for all PhACs studied (75-98%). Hence, considering the optimal operating conditions, the NF270 membrane (MWCO = 400 Da) presented the best performance, achieving permeate fluxes of about 100 kg h-1 m-2 and rejections above 80% at a pressure of 8 bar, that is, a productivity of about twice that of the NF90 membrane (MWCO = 200 Da). Therefore, NF270 was the most suitable membrane for this application, although the tight UF membranes under low operating pressures displayed satisfactory results.

9.
Environ Sci Pollut Res Int ; 30(31): 77238-77245, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37253909

RESUMO

Humic substances (HS) interact with trace metals such as As and Co, affecting their mobility and availability in aquatic systems. However, their combined effects on toxicity to aquatic organisms are not totally understood. The objective of this study was to evaluate the toxicity of Co(II) and As(III) to the water flea Ceriodaphnia dubia in the presence of HS, considering element speciation. Toxicity assays were performed in the presence and absence of HS at two different concentrations of As(III) (10 and 20 µg/L) and Co(II) (50 and 100 µg/L). The free As(III) and Co(II) (< 1 kDa, fraction most potentially bioavailable) in the test solutions were determined via ultrafiltration. While free Co(II) decreased by approximately 80% in the presence of HS, free As(III) decreased just by 1%. Despite the higher percentage of As(III) potentially bioavailable, the presence of HS reduced significantly the toxicity of As at 20 µg/L (no toxicity was observed at 10 µg/L). This was attributed to direct effects of HS such as hormesis, hormone-like effects of HS and/or formation of protective coating. These effects also stimulated the reproduction, including in the assays in the absence of As and Co. HS reduced the toxicity of Co(II) at both test concentrations. The results of this investigation support that HS should be considered when safe limits for As and Co are defined.


Assuntos
Arsênio , Cladocera , Poluentes Químicos da Água , Animais , Cobalto/toxicidade , Arsênio/toxicidade , Substâncias Húmicas/análise , Poluentes Químicos da Água/análise
10.
Metallomics ; 15(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36914218

RESUMO

This work aims to evaluate the size and lability of Cu and Zn bound to proteins in the cytosol of fish liver of Oreochromis niloticus by employing solid-phase extraction (SPE), diffusive gradients in thin films (DGT), and ultrafiltration (UF). SPE was carried out using Chelex-100. DGT containing Chelex-100 as binding agent was employed. Analyte concentrations were determined by ICP-MS. Total Cu and Zn concentrations in cytosol (1 g of fish liver in 5 ml of Tris-HCl) ranged from 39.6 to 44.3 ng ml-1 and 1498 to 2106 ng ml-1, respectively. Data from UF (10-30 kDa) suggested that Cu and Zn in cytosol were associated with ∼70% and 95%, respectively, with high-molecular-weight proteins. Cu-metallothionein was not selectively detected (although 28% of Cu was associated with low-molecular-weight proteins). However, information about the specific proteins in the cytosol will require coupling UF with organic mass spectrometry. Data from SPE showed the presence of labile Cu species of ∼17%, while the fraction of labile Zn species was >55%. However, data from DGT suggested a fraction of labile Cu species only of 7% and a labile Zn fraction of 5%. This data, as compared with previous data from literature, suggests that the DGT technique gave a more plausible estimation of the labile pool of Zn and Cu in cytosol. The combination of results from UF and DGT is capable of contributing to the knowledge about the labile and low-molecular pool of Cu and Zn.


Assuntos
Ciclídeos , Poluentes Químicos da Água , Animais , Ultrafiltração/métodos , Citosol , Zinco/análise , Fígado/química , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
11.
Cardiorenal Med ; 13(1): 56-65, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36630939

RESUMO

Fluid overload is a risk factor for increased morbidity and mortality, especially in patients with heart disease. The treatment options are limited to diuretics and mechanical fluid removal using ultrafiltration or renal replacement therapy. This paper provides an overview of the challenges of managing fluid overload, outlines the risks and benefits of different pharmacological options and extracorporeal techniques, and provides guidance for clinical practice.


Assuntos
Diuréticos , Insuficiência Cardíaca , Humanos , Diuréticos/uso terapêutico , Ultrafiltração/métodos , Insuficiência Cardíaca/tratamento farmacológico , Terapia de Substituição Renal , Fatores de Risco
12.
Med. crít. (Col. Mex. Med. Crít.) ; 37(4): 363-368, feb. 2023. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1569347

RESUMO

Resumen: La insuficiencia renal aguda al interior de la Unidad de Cuidados Intensivos es una condición clínica muy frecuente. Es consecuencia de los múltiples escenarios presentados durante el tiempo de estancia que pueden ir desde los diferentes tipos de choque, pasando por las intoxicaciones e infecciones hasta la polimedicación de nuestros pacientes. Su manifestación depende de la predisposición genética, del tipo de injuria, del grado de respuesta del huésped y su relación en la línea de tiempo en términos de disfunción orgánica múltiple, lo cual hace impredecible su instauración. El uso de la membrana peritoneal al interior de la Unidad de Cuidados Intensivos como primera línea de intervención para realizar diálisis de solutos y de solventes en pacientes adultos críticamente enfermos no es usual; sin embargo, la utilización de diálisis peritoneal se relaciona con excelentes resultados en términos de tiempo de estancia, mortalidad, infecciones adquiridas al interior de la unidad y recuperación de función renal residual consistente con la revisión en la literatura médica. Presentamos el caso clínico de una mujer en la sexta década de la vida, quien desarrolló falla renal aguda, desde el riesgo de injuria renal pasó rápidamente a la injuria renal leve y a la insuficiencia, por lo que requirió diálisis peritoneal que se sumó a una importante casuística clínica generada en los últimos cinco años al interior de nuestra organización.


Abstract: Acute renal failure within the intensive care unit is a very frequent clinical condition. Is the consequence of the multiple settings presented during the stay that can goes from the different types of shock, through poisonings and infections to the polymedication of our patients. Its manifestation depends on the genetic predisposition, the type of injury, the degree of response of the host and its relationship in the timeline in terms of multiple organ dysfunction, which makes its establishment unpredictable. The use of the peritoneal membrane inside the intensive care unit as the first line of intervention to perform dialysis of solutes and solvents in critically ill adult patients is not usual, however the peritoneal dialysis has shown excellent results in time of stay, mortality, infections acquired inside the unit and recovery of residual renal function consistent with medical literature. We present the clinical case of a woman in the sixth decade of life who developed acute renal failure from the risk of renal injury quickly moving to renal injury and failure requiring peritoneal dialysis, adding to an important clinical casuistry generated in the last five years within our organization.


Resumo: A insuficiência renal aguda dentro da unidade de terapia intensiva é uma condição clínica muito frequente. É consequência dos múltiplos cenários apresentados durante a estadia que vão desde os diferentes tipos de choque, passando por intoxicações e infecções até à polimedicação dos nossos doentes. Sua manifestação depende da predisposição genética, do tipo de lesão, do grau de resposta do hospedeiro e de sua relação na linha do tempo em termos de disfunção de múltiplos órgãos, o que torna seu estabelecimento imprevisível. A utilização da membrana peritoneal dentro da unidade de terapia intensiva como primeira linha de intervenção para realização de diálise de solutos e solventes em pacientes adultos em estado grave não é usual; no entanto, o uso da diálise peritoneal está associado a excelentes resultados em termos de tempo de internação, mortalidade, infecções adquiridas na unidade e recuperação da função renal residual condizente com a revisão da literatura médica. Apresentamos o caso clínico de uma mulher na sexta década de vida que desenvolveu insuficiência renal aguda com risco de lesão renal passando rapidamente para lesão renal leve e insuficiência com necessidade de diálise peritoneal, somando-se a um importante casuística clínica gerada nos últimos cinco anos dentro de nossa organização.

13.
Parasitol Res ; 121(12): 3693-3699, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36149500

RESUMO

The quality of many freshwater environments is impacted by human activities, so that many rivers may represent a vehicle for the transmission of health-related microorganisms. This work aimed to isolate and identify genetically free-living amoeba (FLA) of the genus Acanthamoeba from a recreational river in Salta, Argentina, and isolate, if possible, an endocytobiont. Sampling took place at four points (P1-P4) throughout the river in the winter and the summer seasons. Free-living amoebae and Acanthamoeba were recovered from 20-L water concentrated through an ultrafiltration system. Isolation was performed in agar plates, confirmation of Acanthamoeba genus by PCR, and fellow identification and classification based on their sequence analyses. High concentrations of indicator bacteria were found especially in P2, which is intensively used for recreation. Out of a total of 29 FLA isolations, 9 were identified as Acanthamoeba genotype T4 subtype A, the most frequent genotype found in nature and associated with causing human disease. From an axenic culture of Acanthamoeba spp. (KY751412), a bacterial endocytobiont was isolated, and identified as Stenotrophomonas maltophilia. The endocytobiont showed resistance and intermediate resistance to a wide range of widely used antibiotics. Results were in concordance with the cosmopolitan behavior of Acanthamoeba, and showed the importance of studying this group of amoebae and related microorganisms in recreational environments.


Assuntos
Acanthamoeba , Amoeba , Humanos , Amoeba/microbiologia , Água Doce , Bactérias , Rios
14.
Microorganisms ; 10(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35744732

RESUMO

Salmonella enterica is a leading cause of human gastrointestinal disease worldwide. Given that Salmonella is persistent in aquatic environments, this study examined the prevalence, levels and genotypic diversity of Salmonella isolates recovered from major rivers in an important agricultural region in northwestern Mexico. During a 13-month period, a total of 143 river water samples were collected and subjected to size-exclusion ultrafiltration, followed by enrichment, and selective media for Salmonella isolation and quantitation. The recovered Salmonella isolates were examined by next-generation sequencing for genome characterization. Salmonella prevalence in river water was lower in the winter months (0.65 MPN/100 mL) and significantly higher in the summer months (13.98 MPN/100 mL), and a Poisson regression model indicated a negative effect of pH and salinity and a positive effect of river water temperature (p = 0.00) on Salmonella levels. Molecular subtyping revealed Oranienburg, Anatum and Saintpaul were the most predominant Salmonella serovars. Single nucleotide polymorphism (SNP)-based phylogeny revealed that the detected 27 distinct serovars from river water clustered in two major clades. Multiple nonsynonymous SNPs were detected in stiA, sivH, and ratA, genes required for Salmonella fitness and survival, and these findings identified relevant markers to potentially develop improved methods for characterizing this pathogen.

15.
Membranes (Basel) ; 12(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35736282

RESUMO

The objective of this work was to evaluate the effect of operating conditions and fructans size distribution on the tight Ultrafiltration process for agave fructans fractionation. A mathematical model of limiting mass flux transfer was used to represent the profile of concentrations over time at the outlet of a pilot scale ultrafiltration system. First, a Box-Behnken experimental design was performed for the optimization of the parameters that determine the operating conditions in their respective ranges: temperature, 30−60 °C; transmembrane pressure (TMP), 1−5 bar and feed concentration, 50−150 kg∙m−3, on the separation factor (SF) and permeate flux. Then, the validation of the model for different fructans size distribution was carried out. The results showed that for SF, the quadratic terms of temperature, TMP and feed concentration were the most significant factors. Statistical analysis revealed that the temperature-concentration interaction has a significant effect (p < 0.005) and that the optimal conditions were: 46.81 °C, 3.27 bar and 85.70 kg∙m−3. The optimized parameters were used to validate the hydrodynamic model; the adjustments conclude that the model, although simplified, is capable of correctly reproducing the experimental data of agave fructans fractionation by a tight ultrafiltration pilot unit. The fractionation process is favored at higher proportions of FOS:Fc in native agave fructans.

16.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682710

RESUMO

Since it is known that hyaluronic acid contributes to soft tissue growth, elasticity, and scar reduction, different strategies of producing HA have been explored in order to satisfy the current demand of HA in pharmaceutical products and formulations. The current interest deals with production via bacterial and yeast fermentation and extraction from animal sources; however, the main challenge is the right extraction technique and strategy since the original sources (e.g., fermentation broth) represent a complex system containing a number of components and solutes, which complicates the achievement of high extraction rates and purity. This review sheds light on the main pathways for the production of HA, advantages, and disadvantages, along with the current efforts in extracting and purifying this high-added-value molecule from different sources. Particular emphasis has been placed on specific case studies attempting production and successful recovery. For such works, full details are given together with their relevant outcomes.


Assuntos
Ácido Hialurônico , Animais , Fermentação , Ácido Hialurônico/metabolismo
17.
Food Chem X ; 13: 100247, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35499029

RESUMO

The objective of this work was to obtain hydrolysates and peptide fractions from pork (PSC) and chicken (CSC) skin collagen extracts and to evaluate their ability as pancreatic lipase inhibitors. Collagen extracts were hydrolyzed with collagenase or a protease from Bacillus licheniformis (MPRO NX®) at 6, 12, and 24 h. After 24 h incubation, the highest degree of hydrolysis of PSC (p < 0.05) was obtained with collagenase (72.58%), while in CSC was obtained with MPRO NX® (64.45%). Hydrolysates obtained at 24 h had the highest inhibitory activity of lipase (p < 0.05). CSC/collagenase hydrolysates (10 mg/mL) presented the highest inhibitory activity (75.53%) (p < 0.05). Ultrafiltrated fractions >5 kDa from CSC/collagenase and PSC/MPRO NX® hydrolysates were the most bioactive fractions (IC50: 4.33 mg/mL). The highest were obtained by CSC peptides (IC50s: 6.30 and 6.08 mg/mL). These results may be considered as a novel approach to use collagen hydrolysates, or their peptide fractions, as promising natural inhibitors of pancreatic lipase.

18.
Molecules ; 27(4)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35209041

RESUMO

The unstable proteins in white wine cause haze in bottles of white wine, degrading its quality. Thaumatins and chitinases are grape pathogenesis-related (PR) proteins that remain stable during vinification but can precipitate at high temperatures after bottling. The white wine protein stabilization process can prevent haze by removing these unstable proteins. Traditionally, bentonite is used to remove these proteins; however, it is labor-intensive, generates wine losses, affects wine quality, and harms the environment. More efficient protein stabilization technologies should be based on a better understanding of the main factors and mechanisms underlying protein precipitation. This review focuses on recent developments regarding the instability and removal of white wine proteins, which could be helpful to design more economical and environmentally friendly protein stabilization methods that better preserve the products´ quality.


Assuntos
Bentonita/química , Quitinases/química , Temperatura Alta , Proteínas de Plantas/química , Vitis , Vinho
19.
Prep Biochem Biotechnol ; 52(10): 1109-1118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35175876

RESUMO

An enzymatic extract from Aspergillus niger 3T5B8 was produced by Solid State Fermentation (SSF) in aerated columns, using wheat bran as substrate. A combination of extracts produced using three different process conditions varying temperature, pH and aeration formed the final extract (Mixture). The Mixture was concentrated by an ultrafiltration process that partially purified and provided an efficient recovery of the enzymatic activities of xylanase (88.89%), polygalacturonase (89.3%), ß-glucosidase (93.15%), protease (98.68%) and carboxymethylcellulase (CMCase) (98.93%). SDS-PAGE analysis showed 15 visible protein bands in the crude and concentrated Mixture with molecular weights ranging from 15.1 to 104.6 kDa. Thin layer chromatography confirmed the effective action of ß-glucosidase and xylanase hydrolysis activities over cellobiose and xylan, respectively. A central composite design (CCD) with two variables and four replicates at the center points was used to determine the optimal temperature and pH for CMCase and ß-glucosidase. The optimal temperature was 78.9 °C and pH 3.8 for CMCase and 52.8 °C and pH 4.8 for ß-glucosidase, respectively.


Assuntos
Aspergillus niger , beta-Glucosidase , Aspergillus niger/metabolismo , Fermentação , beta-Glucosidase/metabolismo , Temperatura , Extratos Vegetais/metabolismo , Concentração de Íons de Hidrogênio
20.
Environ Technol ; 43(4): 478-488, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32623968

RESUMO

Polyacrylonitrile membranes (PAN) have high stability against chemical agents, making them suitable for a wide range of applications as such Ultrafiltration processes. Ultrafiltration membranes composed of PAN/Superfine powder activated carbon (S-PAC) mixtures can be a good research route, aiming the development of a new separation processes for water treatment. The association of materials to form a single product can have technological and economic advantages in separation processes. In this study, S-PAC impregnated into PAN membranes were prepared, characterized and used, as a case study, to remove diclofenac (DCF) from water. The membranes (PAN/S-PAC) were synthesized with different concentrations of S-PAC (0.2, 0.6, 1.0, 3.0 and 5.0 wt%) by a phase inversion process. The results of the TEM characterizations of the S-PAC indicated the presence of micro and nanoparticles (∼10 nm) and tending to form micrometric clusters. The infrared spectra of the membranes were characteristic of PAN; however, vibrational bands attributed to the S-PAC spectrum were also observed, which indicated an interaction between the materials. The case study showed an increase in the water flux and in the DCF rejection efficiency, for composite membranes (PAN/S-PAC) with higher concentration of S-PAC. The results of static adsorption tests indicated that the mechanism of DCF rejection occurred predominantly by adsorption. There were indications that the PAN/S-PAC membranes formed a composite material and the PAN/S-PAC (3.0) presented the best study composition given the results. Although the research is in its initial phase, the results indicated that the composition can improve many water treatment systems.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Resinas Acrílicas , Adsorção , Carvão Vegetal , Diclofenaco , Membranas Artificiais , Pós , Ultrafiltração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA