Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Braz J Microbiol ; 55(1): 1023-1028, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38200375

RESUMO

The mechanism of colonisation of the chicken intestine by Salmonella remains poorly understood, while the severity of infections vary enormously depending on the serovar and the age of the bird. Several metabolism and virulence genes have been identified in Salmonella Heidelberg; however, information on their roles in infection, particularly in the chicken infection model, remains scarce. In the present publication, we investigated three Salmonella Heidelberg mutants containing deletions in misL, ssa, and pta-ackA genes by using signature-tagged mutagenesis. We found that mutations in these genes of S. Heidelberg result in an increase in fitness in the chicken model. The exception was perhaps the pta-ackA mutant where colonisation was slightly reduced (2, 7, 14, and 21 days post-infection) although some birds were still excreting at the end of the experiment. Our results suggest that for intestinal colonisation of the chicken caecum, substrate-level phosphorylation is likely to be more important than the MisL outer membrane protein or even the secretion system apparatus. These findings validate previous work that demonstrated the contribution of ackA and pta mutants to virulence in chickens, suggesting that the anaerobic metabolism genes such as pta-ackA could be a promising mitigation strategy to reduce S. Heidelberg virulence.


Assuntos
Galinhas , Salmonelose Animal , Animais , Fosforilação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fosfato Acetiltransferase/genética , Fosfato Acetiltransferase/metabolismo , Anaerobiose , Virulência , Salmonella , Salmonelose Animal/microbiologia
2.
Microorganisms ; 11(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37512901

RESUMO

The Amazonian rainforest is a hyper-diverse ecosystem in the number of species and the myriad of intertaxon relationships that are mostly understudied. In order to characterize a dominant and economically important Amazonian species, the Brazil nut tree (Bertholletia excelsa Bonpl.), at the genome level, wegenerated high-coverage long-read sequencing data from the leaves of a single individual. The genome assembly revealed an unexpected discovery: two circular contigs that could be assigned to the chromosome and a plasmid of a Pantoea stewartii strain. Comparative genomics revealed that this strain belongs to the indologenes subspecies and displays high synteny with other strains isolated from diseased leaves of the neotropical palm Bactris gasipaes Kunth. Investigation of pathogenicity-related genes revealed the absence of the entire type III secretion system gene cluster in the plasmid, which was otherwise highly similar to a plasmid from an isolate known to cause disease in Dracaena sanderiana Mast. In contrast, several genes associated with plant-growth promoting traits were detected, including genes involved in indole-3-acetic acid (IAA) production, phosphate solubilization, and biosynthesis of siderophores. In summary, we report the genome of an uncultivated P. stewartii subsp. indologenes strain associated with the Brazil nut tree and potentially a plant growth-promoting bacteria.

3.
Biomedicines ; 10(8)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-36009394

RESUMO

Quorum sensing (QS) and type III secretion systems (T3SSs) are among the most attractive anti-virulence targets for combating multidrug-resistant pathogenic bacteria. Some halogenated furanones reduce QS-associated virulence, but their role in T3SS inhibition remains unclear. This study aimed to assess the inhibition of these two systems on Pseudomonas aeruginosa virulence. The halogenated furanones (Z)-4-bromo-5-(bromomethylene)-2(5H) (C-30) and 5-(dibromomethylene)-2(5H) (named hereafter GBr) were synthesized, and their ability to inhibit the secretion of type III exoenzymes and QS-controlled virulence factors was analyzed in P. aeruginosa PA14 and two clinical isolates. Furthermore, their ability to prevent bacterial establishment was determined in a murine cutaneous abscess model. The GBr furanone reduced pyocyanin production, biofilm formation, and swarming motility in the same manner or more effectively than C-30. Moreover, both furanones inhibited the secretion of ExoS, ExoT, or ExoU effectors in all tested strains. The administration of GBr (25 and 50 µM) to CD1 mice infected with the PA14 strain significantly decreased necrosis formation in the inoculation zone and the systemic spread of bacteria more efficiently than C-30 (50 µM). Molecular docking analysis suggested that the gem position of bromine in GBr increases its affinity for the active site of the QS LasR regulator. Overall, our findings showed that the GBr furanone displayed efficient multi-target properties that may favor the development of more effective anti-virulence therapies.

4.
Infect Immun ; 90(6): e0010722, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35612302

RESUMO

The second messenger cyclic di-GMP (c-di-GMP) is a ubiquitous molecule in bacteria that regulates diverse phenotypes. Among them, motility and biofilm formation are the most studied. Furthermore, c-di-GMP has been suggested to regulate virulence factors, making it important for pathogenesis. Previously, we reported that c-di-GMP regulates biofilm formation and swimming motility in Bordetella bronchiseptica. Here, we present a multi-omics approach for the study of B. bronchiseptica strains expressing different cytoplasmic c-di-GMP levels, including transcriptome sequencing (RNA-seq) and shotgun proteomics with label-free quantification. We detected 64 proteins significantly up- or downregulated in either low or high c-di-GMP levels and 358 genes differentially expressed between strains with high c-di-GMP levels and the wild-type strain. Among them, we found genes for stress-related proteins, genes for nitrogen metabolism enzymes, phage-related genes, and virulence factor genes. Interestingly, we observed that a virulence factor like the type III secretion system (TTSS) was regulated by c-di-GMP. B. bronchiseptica with high c-di-GMP levels showed significantly lower levels of TTSS components like Bsp22, BopN, and Bcr4. These findings were confirmed by independent methods, such as quantitative reverse transcription-PCR (q-RT-PCR) and Western blotting. Higher intracellular levels of c-di-GMP correlated with an impaired capacity to induce cytotoxicity in a eukaryotic cell in vitro and with attenuated virulence in a murine model. This work presents data that support the role that the second messenger c-di-GMP plays in the pathogenesis of Bordetella.


Assuntos
Bordetella bronchiseptica , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Bordetella bronchiseptica/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Camundongos , Sistemas de Secreção Tipo III/metabolismo , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
5.
Braz J Microbiol ; 53(1): 289-301, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34652743

RESUMO

Vibrio parahaemolyticus is an important foodborne pathogenic bacterium that harbors the type III secretion system 1 (T3SS1) as an essential virulence factor. However, the pathogenesis and infection mechanism mediated by T3SS1 are not entirely clarified. Similar to previous studies on other T3SS-positive bacteria, the T3SS1 needle is a major extracellular component in V. parahaemolyticus. We recently showed that the needle gene-deletion mutant (ΔvscF) exhibited markedly decreased cytotoxicity and effector translocation during interaction with HeLa cells. To further elucidate the pathogenesis of T3SS1 during host cell infection, bacterial RNA was extracted from wild-type POR-1 and ΔvscF mutants under infected condition for comparative RNA sequencing analysis in HeLa cell. The results showed that 120 differentially expressed genes (DEGs) were identified in the ΔvscF-infected group. These encoded proteins of DEGs, such as VP2088, VP2089, and VP2091, were annotated as ABC transporter system, whereas VP0757, VP1123, and VP1289 may be new transcriptional regulators. In addition, the downregulation of T3SS1 had a positive influence on the expression of T3SS2. Moreover, the transcription of the basal body is unaffected by the needle, and there was a close relation among the tip, translocon, and needle, because bacterial adenylate cyclase two-hybrid system (BACTH system) assay indicated the interaction of VP1656, VP1670, VP1693, and VP1694 (VscF). This study provides insights into transcription mechanism of T3SS1 upon infecting HeLa cell, which is expected to better clarify the T3SS1 virulent mechanism.


Assuntos
Vibrioses , Vibrio parahaemolyticus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células HeLa , Humanos , Transcriptoma , Vibrioses/microbiologia , Vibrioses/patologia , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo
6.
Molecules ; 26(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34946717

RESUMO

Antimicrobial resistance is one of the current public health challenges to be solved. The World Health Organization (WHO) has urgently called for the development of strategies to expand the increasingly limited antimicrobial arsenal. The development of anti-virulence therapies is a viable option to counteract bacterial infections with the possibility of reducing the generation of resistance. Here we report on the chemical structures of pyrrolidones DEXT 1-4 (previously identified as furan derivatives) and their anti-virulence activity on Pseudomonas aeruginosa strains. DEXT 1-4 were shown to inhibit biofilm formation, swarming motility, and secretion of ExoU and ExoT effector proteins. Also, the anti-pathogenic property of DEXT-3 alone or in combination with furanone C-30 (quorum sensing inhibitor) or MBX-1641 (type III secretion system inhibitor) was analyzed in a model of necrosis induced by P. aeruginosa PA14. All treatments reduced necrosis; however, only the combination of C-30 50 µM with DEXT-3 100 µM showed significant inhibition of bacterial growth in the inoculation area and systemic dispersion. In conclusion, pyrrolidones DEXT 1-4 are chemical structures capable of reducing the pathogenicity of P. aeruginosa and with the potential for the development of anti-virulence combination therapies.


Assuntos
Antibacterianos , Furanos , Hidrocarbonetos Halogenados , Infecções por Pseudomonas , Pseudomonas aeruginosa , Pirrolidinonas , Sistemas de Secreção Tipo III/antagonistas & inibidores , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Furanos/química , Furanos/farmacologia , Humanos , Hidrocarbonetos Halogenados/química , Hidrocarbonetos Halogenados/farmacologia , Camundongos , Necrose , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/patogenicidade , Pirrolidinonas/química , Pirrolidinonas/farmacologia , Percepção de Quorum/efeitos dos fármacos , Sistemas de Secreção Tipo III/metabolismo , Fatores de Virulência/metabolismo
7.
Microorganisms ; 9(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34946027

RESUMO

Several plant extracts exhibit anti-virulence properties due to the interruption of bacterial quorum sensing (QS). However, studies on their effects at the preclinical level are scarce. Here, we used a murine model of abscess/necrosis induced by Pseudomonas aeruginosa to evaluate the anti-pathogenic efficacy of 24 plant extracts at a sub-inhibitory concentration. We analyzed their ability to inhibit QS-regulated virulence factors such as swarming, pyocyanin production, and secretion of the ExoU toxin via the type III secretion system (T3SS). Five of the seven extracts with the best anti-pathogenic activity reduced ExoU secretion, and the extracts of Diphysa americana and Hibiscus sabdariffa were identified as the most active. Therefore, the abscess/necrosis model allows identification of plant extracts that have the capacity to reduce pathogenicity of P. aeruginosa. Furthermore, we evaluated the activity of the plant extracts on Chromobacterium violaceum. T3SS (ΔescU) and QS (ΔcviI) mutant strains were assessed in both the abscess/necrosis and sepsis models. Only the ΔescU strain had lower pathogenicity in the animal models, although no activity of plant extracts was observed. These results demonstrate differences between the anti-virulence activity recorded in vitro and pathogenicity in vivo and between the roles of QS and T3S systems as virulence determinants.

8.
mSphere ; 6(4): e0059921, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34346702

RESUMO

Vibrio parahaemolyticus is a marine Gram-negative bacterium that is a leading cause of seafood-borne gastroenteritis. Pandemic strains of V. parahaemolyticus rely on a specialized protein secretion machinery known as the type III secretion system 2 (T3SS2) to cause disease. The T3SS2 mediates the delivery of effector proteins into the cytosol of infected cells, where they subvert multiple cellular pathways. Here, we identify a new T3SS2 effector protein encoded by VPA1328 (VP_RS21530) in V. parahaemolyticus RIMD2210633. Bioinformatic analysis revealed that VPA1328 is part of a larger family of uncharacterized T3SS effector proteins with homology to the VopG effector protein in Vibrio cholerae AM-19226. These VopG-like proteins are found in many but not all T3SS2 gene clusters and are distributed among diverse Vibrio species, including V. parahaemolyticus, V. cholerae, V. mimicus, and V. diabolicus and also in Shewanella baltica. Structure-based prediction analyses uncovered the presence of a conserved C-terminal kinase domain in VopG orthologs, similar to the serine/threonine kinase domain found in the NleH family of T3SS effector proteins. However, in contrast to NleH effector proteins, in tissue culture-based infections, VopG did not impede host cell death or suppress interleukin 8 (IL-8) secretion, suggesting a yet undefined role for VopG during V. parahaemolyticus infection. Collectively, our work reveals that VopG effector proteins, a new family of likely serine/threonine kinases, is widely distributed in the T3SS2 effector armamentarium among marine bacteria. IMPORTANCE Vibrio parahaemolyticus is the leading bacterial cause of seafood-borne gastroenteritis worldwide. The pathogen relies on a type III secretion system to deliver a variety of effector proteins into the cytosol of infected cells to subvert cellular function. In this study, we identified a novel Vibrio parahaemolyticus effector protein that is similar to the VopG effector of Vibrio cholerae. VopG-like effectors were found in diverse Vibrio species and contain a conserved serine/threonine kinase domain that bears similarity to the kinase domain in the enterohemorrhagic Escherichia coli (EHEC) and Shigella NleH effectors that manipulate host cell survival pathways and host immune responses. Together our findings identify a new family of Vibrio effector proteins and highlight the role of horizontal gene transfer events among marine bacteria in shaping T3SS gene clusters.


Assuntos
Proteínas de Bactérias/genética , Proteínas Serina-Treonina Quinases/genética , Sistemas de Secreção Tipo III/genética , Vibrio parahaemolyticus/enzimologia , Vibrio parahaemolyticus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Células CACO-2 , Biologia Computacional , Regulação Bacteriana da Expressão Gênica , Humanos , Interleucina-8/imunologia , Família Multigênica , Transporte Proteico , Serina/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Vibrio parahaemolyticus/metabolismo , Vibrio parahaemolyticus/patogenicidade
9.
Microorganisms ; 9(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34067942

RESUMO

The type III secretion system (T3SS) is a complex molecular device used by several pathogenic bacteria to translocate effector proteins directly into eukaryotic host cells. One remarkable feature of the T3SS is its ability to secrete different categories of proteins in a hierarchical manner, to ensure proper assembly and timely delivery of effectors into target cells. In enteropathogenic Escherichia coli, the substrate specificity switch from translocator to effector secretion is regulated by a gatekeeper complex composed of SepL, SepD, and CesL proteins. Here, we report a characterization of the CesL protein using biochemical and genetic approaches. We investigated discrepancies in the phenotype among different cesL deletion mutants and showed that CesL is indeed essential for translocator secretion and to prevent premature effector secretion. We also demonstrated that CesL engages in pairwise interactions with both SepL and SepD. Furthermore, while association of SepL to the membrane does not depended on CesL, the absence of any of the proteins forming the heterotrimeric complex compromised the intracellular stability of each component. In addition, we found that CesL interacts with the cytoplasmic domains of the export gate components EscU and EscV. We propose a mechanism for substrate secretion regulation governed by the SepL/SepD/CesL complex.

10.
J Med Microbiol ; 69(12): 1388-1397, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33170119

RESUMO

Introduction. Carbapenem-resistant Pseudomonas aeruginosa is responsible for increased patient mortality.Gap Statement. Five and 30 day in-hospital all-cause mortality in patients with P. aeruginosa infections were assessed, followed by evaluations concerning potential correlations between the type III secretion system (TTSS) genotype and the production of metallo-ß-lactamase (MBL).Methodology. This assessment comprised a retrospective cohort study including consecutive patients with carbapenem-resistant infections hospitalized in Brazil from January 2009 to June 2019. PCR analyses were performed to determine the presence of TTSS-encoding genes and MBL genes.Results. The 30-day and 5-day mortality rates for 262 patients were 36.6 and 17.9 %, respectively. The unadjusted survival probabilities for up to 5 days were 70.55 % for patients presenting exoU-positive isolates and 86 % for those presenting exo-negative isolates. The use of urinary catheters, as well as the presence of comorbidity conditions, secondary bacteremia related to the respiratory tract, were independently associated with death at 5 and 30 days. The exoS gene was detected in 64.8 % of the isolates, the presence of the exoT and exoY genes varied and exoU genes occurred in 19.3 % of the isolates. The exoU genotype was significantly more frequent among multiresistant strains. MBL genes were not detected in 92 % of the isolates.Conclusions. Inappropriate therapy is a crucial factor regarding the worse prognosis among patients with infections caused by multiresistant P. aeruginosa, especially those who died within 5 days of diagnosis, regardless of the genotype associated with TTSS virulence.


Assuntos
Infecção Hospitalar/mortalidade , Infecções por Pseudomonas/mortalidade , Pseudomonas aeruginosa , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/farmacologia , Brasil , Carbapenêmicos/farmacologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/virologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Estudos Retrospectivos , Sistemas de Secreção Tipo III , Adulto Jovem , Resistência beta-Lactâmica
11.
Microb Genom ; 6(3)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32100707

RESUMO

Vibrio cholerae is a human pathogen, which is transmitted by the consumption of contaminated food or water. V. cholerae strains belonging to the serogroups O1 and O139 can cause cholera outbreaks and epidemics, a severe life-threatening diarrheal disease. In contrast, serogroups other than O1 and O139, denominated as non-O1/non-O139, have been mainly associated with sporadic cases of moderate or mild diarrhea, bacteremia and wound infections. Here we investigated the virulence determinants and phylogenetic origin of a non-O1/non-O139 V. cholerae strain that caused a gastroenteritis outbreak in Santiago, Chile, 2018. We found that this outbreak strain lacks the classical virulence genes harboured by O1 and O139 strains, including the cholera toxin (CT) and the toxin-coregulated pilus (TCP). However, this strain carries genomic islands (GIs) encoding Type III and Type VI secretion systems (T3SS/T6SS) and antibiotic resistance genes. Moreover, we found these GIs are wide distributed among several lineages of non-O1/non-O139 strains. Our results suggest that the acquisition of these GIs may enhance the virulence of non-O1/non-O139 strains that lack the CT and TCP-encoding genes. Our results highlight the pathogenic potential of these V. cholerae strains.


Assuntos
Cólera/microbiologia , Gastroenterite/microbiologia , Genoma Bacteriano , Vibrio cholerae/genética , Criança , Chile , Cólera/epidemiologia , Surtos de Doenças , Farmacorresistência Bacteriana/genética , Gastroenterite/epidemiologia , Ilhas Genômicas , Humanos , Masculino , Filogenia , Vibrio cholerae/patogenicidade , Virulência/genética
12.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-31668862

RESUMO

INTRODUCTION: We evaluated the presence of sIgA in saliva, versus Escherichia coli secreted proteins (Esp) related to the type III secretion system (T3SS), and its semi-quantitative concentration in children under 2 years-old (no longer breastfed) who were previously colonized or infected with enteropathogenic E. coli (EPEC). METHODS: We analyzed the presence of sIgA in 40 children, who previously had positive cultures for EPEC associated (n=17) or not associated (n=23) with diarrhea, using the Western Blot technique versus E. coli secreted proteins: EspABCD. A semi-quantitative measurement of the reaction for each protein was made by its density peaks (OD). RESULTS: We found sIgA versus all or some EspABCD proteins in both groups. However, the ill patients had higher concentrations of these antibodies than colonized patients. DISCUSSION: The presence of sIgA in saliva could reflect an intestinal immune response and their levels could be related to a greater exposure and/or bacterial load.


Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Imunoglobulina A Secretora/análise , Fatores de Virulência/análise , Escherichia coli Enteropatogênica/imunologia , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/imunologia , Proteínas de Escherichia coli/análise , Humanos , Lactente , Saliva/imunologia , Sistemas de Secreção Tipo III/análise
13.
Front Cell Infect Microbiol ; 10: 597517, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585272

RESUMO

Blocking virulence is a promising alternative to counteract Pseudomonas aeruginosa infections. In this regard, the phenomenon of cell-cell communication by quorum sensing (QS) is an important anti-virulence target. In this field, fatty acids (FA) have gained notoriety for their role as autoinducers, as well as anti-virulence molecules in vitro, like some saturated FA (SAFA). In this study, we analyzed the anti-virulence activity of SAFA with 12 to18 carbon atoms and compared their effect with the putative autoinducer cis-2-decenoic acid (CDA). The effect of SAFA on six QS-regulated virulence factors and on the secretion of the exoenzyme ExoU was evaluated. In addition, a murine cutaneous infection model was used to determine their influence on the establishment and damage caused by P. aeruginosa PA14. Dodecanoic (lauric, C12:0) and tetradecanoic (myristic, C14:0) acids (SAFA C12-14) reduced the production of pyocyanin by 35-58% at 40 and 1,000 µM, while CDA inhibited it 62% at a 3.1 µM concentration. Moreover, the SAFA C12-14 reduced swarming by 90% without affecting biofilm formation. In contrast, CDA reduced the biofilm by 57% at 3 µM but did not affect swarming. Furthermore, lauric and myristic acids abolished ExoU secretion at 100 and 50 µM respectively, while CDA reduced it by ≈ 92% at 100 µM. Remarkably, the coadministration of myristic acid (200 and 1,000 µM) with P. aeruginosa PA14 induced greater damage and reduced survival of the animals up to 50%, whereas CDA to 500 µM reduced the damage without affecting the viability of the PA14 strain. Hence, our results show that SAFA C12-14 and CDA have a role in regulation of P. aeruginosa virulence, although their inhibition/activation molecular mechanisms are different in complex environments such as in vivo systems.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Antibacterianos/farmacologia , Biofilmes , Camundongos , Ácidos Mirísticos/farmacologia , Percepção de Quorum , Virulência , Fatores de Virulência/farmacologia
14.
Front Microbiol ; 10: 1527, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31338081

RESUMO

The intimin protein is the major adhesin involved in the intimate adherence of atypical enteropathogenic Escherichia coli (aEPEC) strains to epithelial cells, but little is known about the structures involved in their early colonization process. A previous study demonstrated that the type III secretion system (T3SS) plays an additional role in the adherence of an Escherichia albertii strain. Therefore, we assumed that the T3SS could be related to the adherence efficiency of aEPEC during the first stages of contact with epithelial cells. To test this hypothesis, we examined the adherence of seven aEPEC strains and their eae (intimin) isogenic mutants in the standard HeLa adherence assay and observed that all wild-type strains were adherent while five isogenic eae mutants were not. The two eae mutant strains that remained adherent were then used to generate the eae/escN double mutants (encoding intimin and the T3SS ATPase, respectively) and after the adherence assay, we observed that one strain lost its adherence capacity. This suggested a role for the T3SS in the initial adherence steps of this strain. In addition, we demonstrated that this strain expressed the T3SS at significantly higher levels when compared to the other wild-type strains and that it produced longer translocon-filaments. Our findings reveal that the T3SS-translocon can play an additional role as an adhesin at the beginning of the colonization process of aEPEC.

15.
Front Microbiol, v. 10, 1527, jul. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2799

RESUMO

The intimin protein is the major adhesin involved in the intimate adherence of atypicalenteropathogenicEscherichia coli(aEPEC) strains to epithelial cells, but little is knownabout the structures involved in their early colonization process. A previous studydemonstrated that the type III secretion system (T3SS) plays an additional role in theadherence of anEscherichia albertiistrain. Therefore, we assumed that the T3SS couldbe related to the adherence efficiency of aEPEC during the first stages of contactwith epithelial cells. To test this hypothesis, we examined the adherence of sevenaEPEC strains and theireae(intimin) isogenic mutants in the standard HeLa adherenceassay and observed that all wild-type strains were adherent while five isogeniceaemutants were not. The twoeaemutant strains that remained adherent were then usedto generate theeae/escNdouble mutants (encoding intimin and the T3SS ATPase,respectively) and after the adherence assay, we observed that one strain lost itsadherence capacity. This suggested a role for the T3SS in the initial adherence stepsof this strain. In addition, we demonstrated that this strain expressed the T3SS atsignificantly higher levels when compared to the other wild-type strains and that itproduced longer translocon-filaments. Our findings reveal that the T3SS-transloconcan play an additional role as an adhesin at the beginning of the colonization processof aEPEC.

16.
Microorganisms ; 6(4)2018 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-30373243

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic Escherichia coli (EPEC) are attaching and effacing (A/E) pathogens, which translocate effector proteins to intestinal enterocytes through a type III secretion system (T3SS). T3SS and most of its effector proteins are encoded in a pathogenicity island called LEE. Recently, new effectors have been located outside the LEE. This study aimed to characterize EspY3, a novel non-LEE encoded T3SS effector of EHEC. EspY3 shares homology with SopD and PipB2 effector proteins of Salmonella's T3SS-1 and T3SS-2, respectively. The presence of recombinant EspY3 in the supernatant samples demonstrated that EspY3 was secreted by the T3SS of EHEC and EPEC. Through infection assays, we demonstrated the translocation of EspY3 into Caco-2 cells by T3SS of EPEC. The subcellular localization of EspY3 was determined in the pedestal region, where its presence generates a significant increase in the size of the pedestals area. The EspY3 effector induced the elongation of polymerized actin pedestals in infected Caco-2 by EPEC. This study confirmed that EspY3 is part of the repertoire of T3SS effectors of EHEC O157:H7, and that it participates in modeling cellular actin during the infection.

17.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;51(10): e7423, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-951708

RESUMO

Epithelial cell migration is an essential response to enteric pathogens such as enteropathogenic Escherichia coli (EPEC). This study aimed to investigate the effects of EPEC infection on intestinal epithelial cell migration in vitro, as well as the involvement of type III secretion system (T3SS) and Rho GTPases. Crypt intestinal epithelial cells (IEC-6) were infected with EPEC strains (E2348/69, ΔescF, and the LDI001 strain isolated from a malnourished Brazilian child) and commensal E. coli HS. Wound migration and cell death assays were performed at different time-points. Transcription and expression of Rho GTPases were evaluated using real-time PCR and western blotting. Overall, EPEC E2348/69 reduced migration and increased apoptosis and necrosis levels compared to EPEC LDI001 and E. coli HS strains. Moreover, EPEC LDI001 impaired cell migration at a higher level than E. coli HS and increased necrosis after 24 hours compared to the control group. The different profiles of virulence genes between the two wild-type EPEC strains, characterized by the absence of espL and nleE genes in the LDI001, might explain the phenotypic results, playing significant roles on cell migration impairment and cell death-related events. Moreover, the type III secretion system is determinant for the inhibition of intestinal epithelial cell migration by EPEC 2348/69, as its deletion prevented the effect. Active Rac1 concentrations were increased in E2348/69 and LDI001-infected cells, while the T3SS-deficient strain did not demonstrate this activation. This study contributes with valuable insight to characterize the mechanisms involved in the impairment of intestinal cell migration induced by EPEC.


Assuntos
Humanos , Movimento Celular/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Fatores de Virulência/genética , Células Epiteliais/microbiologia , Escherichia coli Enteropatogênica/patogenicidade , Sistemas de Secreção Tipo III/fisiologia , Western Blotting , Apoptose , Fatores de Virulência/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Citometria de Fluxo
18.
Front Microbiol ; 8: 2213, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29176969

RESUMO

Chromobacterium violaceum is an abundant component of the soil and water microbiota in tropical and subtropical regions around the world. For many years, it was mainly known as a producer of violacein and as a reporter for the discovery of quorum sensing molecules. However, C. violaceum has recently emerged as an important model of an environmental opportunistic pathogen. Its high virulence in human infections and a mouse infection model involves the possession of several predicted virulence traits, including two type III secretion systems (T3SSs). In this article, in addition to providing an update on the new clinical cases of human C. violaceum infections, we will focus on recent advances in understanding the molecular mechanisms regarding C. violaceum pathogenesis. It has been demonstrated that the C. violaceum Cpi-1 T3SS plays a pivotal role in interaction with host cells. It is required for the secretion of effector proteins and is the agonist recognized by the Nod-like receptor CARD domain-containing protein 4 (NLRC4) inflammasome from innate immune cells. Pyroptosis and its release of hepatocytes for killing by neutrophils are key events required for the clearance of C. violaceum. Given the prominent role of T3SSs in C. violaceum virulence, we examine their occurrence in the Chromobacterium genus, taking advantage of several draft genome sequences of Chromobacterium species that have recently become available. Our finding that the Cpi-1 T3SS is widespread among Chromobacterium species points toward the pathogenic potential of this genus for humans or to novel roles of the T3SS in the interaction of Chromobacterium species with other organisms.

19.
J Bacteriol ; 199(1)2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795324

RESUMO

The type III secretion system (T3SS) is a supramolecular machine used by many bacterial pathogens to translocate effector proteins directly into the eukaryotic host cell cytoplasm. Enteropathogenic Escherichia coli (EPEC) is an important cause of infantile diarrheal disease in underdeveloped countries. EPEC virulence relies on a T3SS encoded within a chromosomal pathogenicity island known as the locus of enterocyte effacement (LEE). In this work, we pursued the functional characterization of the LEE-encoded protein EscK (previously known as Orf4). We provide evidence indicating that EscK is crucial for efficient T3S and belongs to the SctK (OrgA/YscK/MxiK) protein family, whose members have been implicated in the formation of a sorting platform for secretion of T3S substrates. Bacterial fractionation studies showed that EscK localizes to the inner membrane independently of the presence of any other T3SS component. Combining yeast two-hybrid screening and pulldown assays, we identified an interaction between EscK and the C-ring/sorting platform component EscQ. Site-directed mutagenesis of conserved residues revealed amino acids that are critical for EscK function and for its interaction with EscQ. In addition, we found that T3S substrate overproduction is capable of compensating for the absence of EscK. Overall, our data suggest that EscK is a structural component of the EPEC T3SS sorting platform, playing a central role in the recruitment of T3S substrates for boosting the efficiency of the protein translocation process. IMPORTANCE: The type III secretion system (T3SS) is an essential virulence determinant for enteropathogenic Escherichia coli (EPEC) colonization of intestinal epithelial cells. Multiple EPEC effector proteins are injected via the T3SS into enterocyte cells, leading to diarrheal disease. The T3SS is encoded within a genomic pathogenicity island termed the locus of enterocyte effacement (LEE). Here we unravel the function of EscK, a previously uncharacterized LEE-encoded protein. We show that EscK is central for T3SS biogenesis and function. EscK forms a protein complex with EscQ, the main component of the cytoplasmic sorting platform, serving as a docking site for T3S substrates. Our results provide a comprehensive functional analysis of an understudied component of T3SSs.


Assuntos
Proteínas de Transporte/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Sistemas de Secreção Tipo III/fisiologia , Proteínas de Transporte/genética , Escherichia coli Enteropatogênica/genética , Proteínas de Escherichia coli/genética , Mutação
20.
Artigo em Inglês | MEDLINE | ID: mdl-27818950

RESUMO

Enteropathogenic Escherichia coli and enterohemorrhagic E. coli are diarrheagenic bacterial human pathogens that cause severe gastroenteritis. These enteric pathotypes, together with the mouse pathogen Citrobacter rodentium, belong to the family of attaching and effacing pathogens that form a distinctive histological lesion in the intestinal epithelium. The virulence of these bacteria depends on a type III secretion system (T3SS), which mediates the translocation of effector proteins from the bacterial cytosol into the infected cells. The core architecture of the T3SS consists of a multi-ring basal body embedded in the bacterial membranes, a periplasmic inner rod, a transmembrane export apparatus in the inner membrane, and cytosolic components including an ATPase complex and the C-ring. In addition, two distinct hollow appendages are assembled on the extracellular face of the basal body creating a channel for protein secretion: an approximately 23 nm needle, and a filament that extends up to 600 nm. This filamentous structure allows these pathogens to get through the host cells mucus barrier. Upon contact with the target cell, a translocation pore is assembled in the host membrane through which the effector proteins are injected. Assembly of the T3SS is strictly regulated to ensure proper timing of substrate secretion. The different type III substrates coexist in the bacterial cytoplasm, and their hierarchical secretion is determined by specialized chaperones in coordination with two molecular switches and the so-called sorting platform. In this review, we present recent advances in the understanding of the T3SS in attaching and effacing pathogens.


Assuntos
Citrobacter rodentium/metabolismo , Escherichia coli Êntero-Hemorrágica/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Fatores de Virulência/metabolismo , Animais , Citrobacter rodentium/genética , Citrobacter rodentium/patogenicidade , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/patogenicidade , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/patogenicidade , Humanos , Camundongos , Multimerização Proteica , Transporte Proteico , Sistemas de Secreção Tipo III/química , Sistemas de Secreção Tipo III/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA