Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 19(1): e202100566, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34793623

RESUMO

Infections caused by microorganisms are a major cause of morbidity and mortality worldwide, and natural products continue to be important sources for the discovery of new antimicrobial agents. Ursolic acid is a triterpene with known antibacterial action, being naturally found in plants, such as Jaracanda oxyphylla and Jacaranda caroba (Bignoniaceae). Ursolic acid derivative esters have revealed potential biological activities, such as antitumor, antiviral, and antibacterial activity. In this study, sixteen esters (1-16) were synthesized from ursolic acid using DIC/DMAP and characterized by infrared (IR), nuclear magnetic resonance (1 H- and 13 C-NMR) and mass spectrometry. All ursolic acid esters were evaluated against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, and the yeast Candida albicans. Six compounds are herein described for the first time (3, 9, 11, 13, 14 and 16) with yields up to 91.6 %. Compounds 11 (3ß-(3,4-dimethoxybenzoyl)ursolic acid) and 15 (3ß-nicotinoylursolic acid) displayed promising antifungal activity, with inhibition of C. albicans growth of 93.1 and 95.9 %, respectively.


Assuntos
Anti-Infecciosos/síntese química , Ésteres/química , Triterpenos/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bignoniaceae/química , Bignoniaceae/metabolismo , Candida albicans/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Triterpenos/síntese química , Triterpenos/farmacologia , Ácido Ursólico
2.
Pest Manag Sci ; 72(10): 1883-7, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27501778

RESUMO

BACKGROUND: Insecticide resistance to commonly used substances demands new molecules for the chemical control of the dengue vector Aedes aegypti. Because natural product sources have been an alternative to obtain larvicidal compounds, the aim of this study was to evaluate the triterpenoids betulinic (BA) and ursolic (UA) acids and their semi-synthetic derivatives against larval Ae. aegypti. BA, UA, ten derivatives modified at the C-3 position and a positive control (diflubenzuron) were evaluated. Larvicidal assays were carried out with early fourth-instar larvae, and mortality was observed between 48 and 96 h. Doses from 200 to 10 ppm were used to calculate lethal concentrations (LCs). RESULTS: Natural compounds, i.e. UA and BA, had the lowest LCs (LC50 of 112 and 142 ppm respectively), except for the modified compound 2b (LC50 of 130 ppm). Larvicidal activity increased significantly from 48 to 96 h for all the compounds evaluated, ranging from 20 to 50% after 48 h and from 48 to 76% after 96 h. Some derivatives, e.g. 2a and 2d, had up to a three-fold larvicidal activity increase from 48 to 96 h. CONCLUSION: BA, UA and their derivatives showed larvicidal activity against Ae. aegypti larvae, increasing significantly from 48 to 96 h. The presence of a hydroxyl group is essential for larvicidal potential in these triterpenoids. © 2016 Society of Chemical Industry.


Assuntos
Aedes , Inseticidas , Triterpenos , Animais , Dengue , Diflubenzuron , Insetos Vetores , Larva , Triterpenos Pentacíclicos , Ácido Betulínico , Ácido Ursólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA