Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(1)2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-35011359

RESUMO

Silver and gold nanoparticles were synthesized under environmentally-friendly reaction conditions by using a biodegradable copolymer and water as a solvent. The triblock copolymer Pluronic P103 was utilized as a stabilizing agent or soft template to produce Ag and Au nanoparticles (NPs) of different sizes. Moreover, in the synthesis of Au NPs, the polymer acted as a reducing agent, decreasing the number of reagents used and consequently the residues produced, hence, rendering the procedure less complicated. It was observed that as the concentration of the polymer increased, the size of the metallic NPs augmented as well. However, AgNPs and AuNPs prepared with 1 and 10 wt% Pluronic P103, respectively, showed a significant decrease in particle size due to the presence of polymeric soft templates. The hybrid materials (metal/polymer) were characterized by UV-Vis spectroscopy, DLS, and TEM. The pre-synthesized nanoparticles were employed to decorate anatase-TiO2, and the composites were characterized by DRS, XRD, BET surface area measurements, the TEM technique with the EDS spectrum, and XPS spectroscopy to demonstrate NPs superficial incorporation. Finally, methylene blue was used as a probe molecule to evidence the effect of NPs decoration in its photocatalytic degradation. The results showed that the presence of the NPs positively affected methylene blue degradation, achieving 96% and 97% removal by utilizing TAg0.1 and TAu10, respectively, in comparison to bare anatase-TiO2 (77%).

2.
J Photochem Photobiol B ; 212: 112039, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33002779

RESUMO

In this study we report a novel theranostic lipid-polymer liposome, obtained from DPPC and the triblock copolymer F127 covalently modified with 5(6)-carboxyfluorescein (CF) for photodynamic applications. Due to the presence of F127, small unilamellar vesicle (SUV) liposomes were synthesized by a simple and fast thin-film hydration method without the need for an extrusion process. The vesicles have around 100 nm, low polydispersity and superb solution stability. The clinically used photosensitizer verteporfin (VP) was entrapped into the vesicles, mostly in monomeric form, with 90% loading efficiency. Stern-Volmer and fluorescence lifetime assays showed heterogeneous distribution of the VP and CF into the vesicles, ensuring the integrity of their individual photophysical properties. The theranostic properties were entirely photoactivatable and can be trigged by a unique wavelength (470 nm). The feasibility of the system was tested against the Glioblastoma multiforme cell line T98G. Cellular uptake by time-resolved fluorescence microscopy showed monomerized VP (monoexponential decay, 6.0 ns) at nucleus level, while CF was detected at the membrane by fluorescence microscopy. The strategy's success was supported by the reduction of 98% in the viability of T98G cells by the photoactivated lipid-polymer liposome with [VP] = 1.0 µmol L-1. Therefore, the novel theranostic liposome is a potential system for use in cancer and ocular disease therapies.


Assuntos
Fotoquimioterapia/métodos , Verteporfina/administração & dosagem , Verteporfina/farmacologia , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Humanos , Cinética , Lipossomos , Verteporfina/uso terapêutico
3.
Ther Deliv ; 11(7): 431-446, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32627679

RESUMO

Aim: This work aimed to develop a mucoadhesive film composed of a triblock copolymer (poloxamer 407), polyvinyl alcohol and polyvinylpyrrolidone for buccal modified delivery of metronidazole. Materials & methods: Three film formulations containing different polymer amounts were prepared by solvent casting. They were characterized as physicochemical, mechanical and mucoadhesive properties, and in vitro metronidazole release profiles. Results: Films displayed physicochemical, mechanical and mucoadhesive characteristics dependent of polymeric composition and drug presence. They could rapidly swell and promote the fast drug release (80% in 20 min) that was governed by Fickian diffusion. The films showed total disintegration in less than 90 s and total drug release in 30 min. Conclusion: Therefore, the formulations represent a promising alternative for modifying of buccal metronidazole delivery for pharmaceutical applications.


Assuntos
Álcool de Polivinil , Povidona , Adesividade , Administração Bucal , Sistemas de Liberação de Medicamentos , Metronidazol , Mucosa Bucal , Poloxâmero
4.
Colloids Surf B Biointerfaces ; 180: 177-185, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31048243

RESUMO

One of the main toxicities associated to intravenous administration of amphiphilic drugs is pronounced hemolytic activity. To overcome this limitation, we investigated the anti-hemolytic properties of polymeric micelles of Pluronics, triblock copolymers of poly(ethylene oxide) and poly(propylene oxide). We studied the encapsulation of the amphiphilic compound miltefosine (HePC) into polymeric micelles of Pluronics F108, F68, F127, L44, and L64. In vitro hemolysis indicated that, among the five copolymers studied, only F127 completely inhibited hemolytic effect of HePC at 50 µg/mL, this effect was also observed for other two amphiphilic molecules (cetyltrimethylammonium bromide and cethylpyridinium chloride). To better understand this interaction, we analyzed the HC50 (concentration causing 50% of hemolysis) for HePC free and loaded into F127 micelles. Copolymer concentration influenced the hemolytic profile of encapsulated HePC; for F127 the HC50 increased relative to free HePC (40 µg/mL) up to 184, 441, 736 and 964 µg/mL, for 1, 3, 6 and 9% F127, respectively. Interestingly, a linear relationship was found between HC50-HePC and F127 concentration. At 3% of F127, it is possible to load up to 300 µg/mL of HePC with no hemolytic effect. By achieving this level of hemolysis protection, a promising application is on the view, bringing the parenteral use of HePC and other amphiphilic drugs. Additionally, small-angle X-ray scattering (SAXS) was used to asses structural information on the interactions between HePC and F127 micelles.


Assuntos
Antifúngicos/farmacologia , Portadores de Fármacos , Hemólise/efeitos dos fármacos , Fosforilcolina/análogos & derivados , Tensoativos/farmacologia , Animais , Antifúngicos/química , Cetrimônio/química , Cetrimônio/farmacologia , Cetilpiridínio/química , Cetilpiridínio/farmacologia , Relação Dose-Resposta a Droga , Composição de Medicamentos/métodos , Eritrócitos/efeitos dos fármacos , Micelas , Fosforilcolina/química , Fosforilcolina/farmacologia , Poloxâmero/química , Poloxâmero/farmacologia , Ovinos , Tensoativos/química
5.
Food Chem ; 280: 1-7, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30642473

RESUMO

Colorimetric nanosensors formed of polydiacetylene (PDA), triblock copolymer (L64 or F68), and sodium dodecyl sulfate (SDS), so-called nanoblends, were developed to detect enrofloxacin (ENRO) in aqueous media. The nanosensors show hydrodynamic diameter ranging from 234.2 ±â€¯3.5 to 801.6 ±â€¯17.8 nm for SDS concentrations of 13.0-21.0 mM, respectively. The lowest limit of detection was 0.054 µM, which is five times smaller than the maximum limit allowed by the European Union. The response surfaces showed that both the SDS and ENRO concentrations influenced the colorimetric response (p < 0.05), and kinetic rate of colorimetric transition (RCT). SDS concentration between 11.0 and 14.0 mM in the nanoblend yielded the most sensitive nanosensors for detecting ENRO. When L64 was replaced by F68, the colorimetric response of the nanoblends was similar, but PDA/F68/SDS showed a slower RCT than PDA/L64/SDS. The developed nanosensor is a sensitive and simple device for the fast detection of ENRO.


Assuntos
Colorimetria , Enrofloxacina/análise , Polímero Poliacetilênico/química , Polímeros/química , Tensoativos/química , Antibacterianos/análise , Limite de Detecção , Dodecilsulfato de Sódio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA