Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Somatosens Mot Res ; 36(4): 241-248, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31583939

RESUMO

This study examined the association between plantarflexion torque variability during quiet bipedal standing (QS) and during plantarflexion force- and position-matching tasks (FT and PT, respectively). In QS, participants stood still over a force plate, and the mean plantarflexion torque level exerted by each subject in QS (divided by 2 to give the torque due to a single leg) served as the target torque level for right leg FT and PT (performed with the participants seated with their right knee fully extended). During FT participants controlled the force level exerted by the foot against a rigid restraint, while during PT they controlled the angular position of the ankle when sustaining equivalent inertial loads. Standard deviation (SD) of plantarflexion torque was computed from torque signals acquired during periods with and without visual feedback. Significant correlations were found between plantarflexion torque variability in QS and FT (r = 0.8615, p < 0.0001 and r = 0.8838, p = 0.0003 for visual and no visual conditions, respectively) as well as between QS and PT (r = 0.8046, p = 0.003 and r = 0.7332, p = 0.0103 for visual and no visual conditions, respectively), regardless of vision availability. No significant differences were found between the correlations for Qs vs FT and QS vs PT (t(8) = 0.4778, p = 0.6455 and t(8) = 1.6819, p = 0.1310 for visual and no visual conditions, respectively), as assessed by "Hotelling-Williams" tests for equality among dependent correlations. The results indicate that simple measurements of plantarflexion torque fluctuations during FT and PT may be used to estimate balance ability. From a practical standpoint, it is suggested that rehabilitation protocols designed to regain/improve balance function may be based on the performance of FTs or PTs executed in a seated position.


Assuntos
Fenômenos Biomecânicos/fisiologia , Retroalimentação Sensorial/fisiologia , Pé/fisiologia , Equilíbrio Postural/fisiologia , Postura/fisiologia , Adulto , Humanos , Torque
2.
J Neurophysiol ; 110(11): 2592-606, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24027105

RESUMO

This study focuses on neuromuscular mechanisms behind ankle torque and EMG variability during a maintained isometric plantar flexion contraction. Experimentally obtained torque standard deviation (SD) and soleus, medial gastrocnemius, and lateral gastrocnemius EMG envelope mean and SD increased with mean torque for a wide range of torque levels. Computer simulations were performed on a biophysically-based neuromuscular model of the triceps surae consisting of premotoneuronal spike trains (the global input, GI) driving the motoneuron pools of the soleus, medial gastrocnemius, and lateral gastrocnemius muscles, which activate their respective muscle units. Two types of point processes were adopted to represent the statistics of the GI: Poisson and Gamma. Simulations showed a better agreement with experimental results when the GI was modeled by Gamma point processes having lower orders (higher variability) for higher target torques. At the same time, the simulations reproduced well the experimental data of EMG envelope mean and SD as a function of mean plantar flexion torque, for the three muscles. These results suggest that the experimentally found relations between torque-EMG variability as a function of mean plantar flexion torque level depend not only on the intrinsic properties of the motoneuron pools and the muscle units innervated, but also on the increasing variability of the premotoneuronal GI spike trains when their mean rates increase to command a higher plantar flexion torque level. The simulations also provided information on spike train statistics of several hundred motoneurons that compose the triceps surae, providing a wide picture of the associated mechanisms behind torque and EMG variability.


Assuntos
Contração Isométrica , Modelos Neurológicos , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Adulto , Análise de Variância , Feminino , Humanos , Masculino , Músculo Esquelético/inervação , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA