Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Allergy Asthma Immunol Res ; 13(5): 746-761, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34486259

RESUMO

PURPOSE: Eosinophils are frequently found in atopic dermatitis (AD) and chronic spontaneous urticaria (CSU) that release eosinophil peroxidase (EPX) and eosinophil cationic protein (ECP). Continuous exposure to these proteins could trigger an autoimmune response which may contribute to the pathogenesis and severity of skin inflammation. In this study, we investigate the immunoglobulin E (IgE) response against eosinophil proteins in CSU and AD. METHODS: We recruited patients with severe AD, severe CSU and healthy subjects to explore the presence of IgE autoantibodies and cross-reactivity against EPX, ECP and thyroid peroxidase (TPO). The potential cross-reactive epitopes among the peroxidase family were determined using in silico tools. RESULTS: The frequencies of anti-EPX IgE (28.8%) and anti-ECP IgE (26.6%) were higher in the AD group, and anti-TPO IgE was higher in the CSU group (27.2%). In the CSU group, there was a correlation between the anti-EPX IgE and anti-TPO IgE levels (r = 0.542, P < 0.001); TPO inhibited 42% of IgE binding to EPX, while EPX inhibited 59% of IgE binding to TPO, suggesting a cross-reactivity with EPX as a primary sensitizer. There was greater inhibition when we used a pool of sera CSU and AD, TPO inhibited 52% of IgE binding to EPX, while EPX inhibited 78% of IgE binding to TPO. In silico analysis showed a possible shared epitope in the peroxidase protein family. CONCLUSIONS: IgE against eosinophil proteins may contribute to chronic inflammation in patients with AD and CSU. Cross-reactivity between EPX and TPO could explain thyroid problems in CSU patients.

2.
Immunol Lett ; 220: 71-78, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32027873

RESUMO

BACKGROUND: Human proteins such as interleukin-24 (IL24), thyroperoxidase (TPO) and thyroglobulin (Tg) are targets of IgE or IgG autoantibodies. Why these proteins are recognized by autoantibodies in some patients with chronic spontaneous urticaria (CSU) or hypothyroidism is unknown. OBJECTIVE: Through in silico analysis, identify antigen patches of TPO, Tg and IL24 and compare the sequences of these human proteins with some prevalent allergens. METHODS: The amino acids sequences of IL24, thyroperoxidase and thyroglobulin were compared between them and with 22 environmental allergens. Phylogenetic studies and multiple pairing were carried out to explore the degree of protein identity and cover. The proteins without 3D structure reported in the database, were modeled by homology with "Swiss Modeller" and compared through PYMOL. Residues conserved and accessible to the solvent (rASA> 0.25) were located in the 3D model to identify possible areas of cross-reactivity and antigen binding. RESULTS: We build a 3D model of the TPO and thyroglobulin protein base on proteins closely related. Five epitopes for TPO, six for IL24 and six for thyroglobulin were predicted. The amino acid sequences of allergens from different sources (Dermatophagoides pteronyssinus, Blomia tropicalis, Betula verrucosa, Cynodon dactylon, Aspergillus fumigatus, Canis domesticus, Felis domesticus) were compared with human TPO, Tg and IL24. The cover and alignments between allergens and human proteins were low. CONCLUSION: We identify possible linear and conformational epitopes of TPO, Tg and IL24 that could be the target of IgE or IgG binding in patients with urticaria or hypothyroidism; These epitopes do not appear to be present among common environmental allergens, suggesting that autoreactivity to these human proteins are not by cross-reactivity.


Assuntos
Alérgenos/imunologia , Autoantígenos/imunologia , Urticária Crônica/imunologia , Epitopos/imunologia , Hipotireoidismo/imunologia , Interleucinas/imunologia , Iodeto Peroxidase/imunologia , Proteínas de Ligação ao Ferro/imunologia , Tireoglobulina/imunologia , Animais , Aspergillus fumigatus/imunologia , Autoanticorpos/imunologia , Autoantígenos/química , Autoantígenos/classificação , Gatos , Reações Cruzadas , Cães , Mapeamento de Epitopos , Epitopos/química , Epitopos/classificação , Humanos , Interleucinas/química , Interleucinas/classificação , Iodeto Peroxidase/química , Iodeto Peroxidase/classificação , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/classificação , Modelos Químicos , Filogenia , Tireoglobulina/química , Tireoglobulina/classificação
3.
Mol Cell Endocrinol ; 420: 105-15, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26610751

RESUMO

Thyroid peroxidase (TPO) is essential for thyroid hormone synthesis mediating the covalent incorporation of iodine into tyrosine residues of thyroglobulin process known as organification. Thyroid-stimulating hormone (TSH) via cAMP signaling is the main hormonal regulator of TPO gene expression. In thyroid cells, TSH-stimulated nitric oxide (NO) production inhibits TSH-induced thyroid-specific gene expression, suggesting a potential autocrine role of NO in modulating thyroid function. Indeed, NO donors downregulate TSH-induced iodide accumulation and organification in thyroid cells. Here, using FRTL-5 thyroid cells as model, we obtained insights into the molecular mechanism underlying the inhibitory effects of NO on iodide organification. We demonstrated that NO donors inhibited TSH-stimulated TPO expression by inducing a cyclic guanosine monophosphate-dependent protein kinase-mediated transcriptional repression of the TPO gene. Moreover, we characterized the FoxE1 binding site Z as mediator of the NO-inhibited TPO expression. Mechanistically, we demonstrated that NO decreases TSH-induced FoxE1 expression, thus repressing the transcripcional activation of TPO gene. Taken together, we provide novel evidence reinforcing the inhibitory role of NO on thyroid cell function, an observation of potential pathophysiological relevance associated with human thyroid pathologies that come along with changes in the NO production.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Iodeto Peroxidase/metabolismo , Óxido Nítrico/metabolismo , Tireotropina/farmacologia , Animais , Bovinos , Linhagem Celular , AMP Cíclico/farmacologia , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Iodeto Peroxidase/genética , Doadores de Óxido Nítrico/farmacologia , Nitritos/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA