Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 262: 119516, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35931308

RESUMO

Detection of novel stimuli that violate statistical regularities in the sensory scene is of paramount importance for the survival of biological organisms. Event-related potentials, phasic increases in pupil size, and evoked changes in oscillatory power have been proposed as markers of sensory novelty detection. However, how conscious access to novelty modulates these different brain responses is not well understood. Here, we studied the neural responses to sensory novelty in the auditory modality with and without conscious access. We identified individual thresholds for conscious auditory discrimination and presented to our participants sequences of tones, where the last stimulus could be another standard, a subthreshold target or a suprathreshold target. Participants were instructed to report whether the last tone of each sequence was the same or different from those preceding it. Results indicate that attentional orientation to behaviorally relevant stimuli and overt decision-making mechanisms, indexed by the P3 event-related response and reaction times, best predict whether a novel stimulus will be consciously accessed. Theta power and pupil size do not predict conscious access to novelty, but instead reflect information maintenance and unexpected sensory uncertainty. These results highlight the interplay between bottom-up and top-down mechanisms and how the brain weights neural responses to novelty and uncertainty during perception and goal-directed behavior.


Assuntos
Estado de Consciência , Eletroencefalografia , Estimulação Acústica , Atenção/fisiologia , Percepção Auditiva/fisiologia , Estado de Consciência/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Humanos
2.
Proc Natl Acad Sci U S A ; 119(20): e2203024119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35561217

RESUMO

Remembering life episodes is a complex process that requires interaction among multiple brain areas. It is thought that contextual information provided by the hippocampus (HPC) can trigger the recall of a past event through the activation of medial prefrontal cortex (mPFC) neuronal ensembles, but the underlying mechanisms remain poorly understood. However, little is known about the coordinated activity between these structures during recall. We performed electrophysiological recordings in behaving rats during the retrieval phase of the object-in-context (OIC) memory task. Context-guided recognition of objects in this task requires the activity of both the mPFC and the ventral HPC (vHPC). Coherence, phase locking, and theta amplitude correlation analysis showed an increase in vHPC-mPFC LFP synchronization in the theta range when animals explore contextually mismatched objects. Moreover, we identified ensembles of putative pyramidal cells in the mPFC that encode specific object­context associations. Interestingly, the increase of vHPC-mPFC synchronization during exploration of the contextually mismatched object and the preference of mPFC incongruent object neurons predicts the animals' performance during the resolution of the OIC task. Altogether, these results identify changes in vHPC-mPFC synchronization and mPFC ensembles encoding specific object­context associations likely involved in the recall of past events.


Assuntos
Hipocampo , Rememoração Mental , Córtex Pré-Frontal , Animais , Hipocampo/fisiologia , Rememoração Mental/fisiologia , Córtex Pré-Frontal/fisiologia , Ratos
3.
Brain Sci ; 13(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36671983

RESUMO

The septal complex regulates both motivated and innate behaviors, chiefly by the action of its diverse population of long-range projection neurons. A small population of somatostatin-expressing GABAergic cells in the lateral septum projects deep into subcortical regions, yet on its way it also targets neighboring medial septum neurons that profusely innervate cortical targets by ascending synaptic pathways. Here, we used optogenetic stimulation and extracellular recordings in acutely anesthetized transgenic mice to show that lateral septum somatostatin neurons can disinhibit the cholinergic septo-hippocampal pathway, thus enhancing the amplitude and synchrony of theta oscillations while depressing sharp-wave ripple episodes in the dorsal hippocampus. These results suggest that septal somatostatin cells can recruit ascending cholinergic pathways to promote hippocampal theta oscillations.

4.
J Neurosci ; 37(40): 9675-9685, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28887385

RESUMO

Reactivated memories can be modified during reconsolidation, making this process a potential therapeutic target for posttraumatic stress disorder (PTSD), a mental illness characterized by the recurring avoidance of situations that evoke trauma-related fears. However, avoidance memory reconsolidation depends on a set of still loosely defined boundary conditions, limiting the translational value of basic research. In particular, the involvement of the hippocampus in fear-motivated avoidance memory reconsolidation remains controversial. Combining behavioral and electrophysiological analyses in male Wistar rats, we found that previous learning of relevant nonaversive information is essential to elicit the participation of the hippocampus in avoidance memory reconsolidation, which is associated with an increase in theta- and gamma-oscillation power and cross-frequency coupling in dorsal CA1 during reactivation of the avoidance response. Our results indicate that the hippocampus is involved in memory reconsolidation only when reactivation results in contradictory representations regarding the consequences of avoidance and suggest that robust nesting of hippocampal theta-gamma rhythms at the time of retrieval is a specific reconsolidation marker.SIGNIFICANCE STATEMENT Posttraumatic stress disorder (PTSD) is characterized by maladaptive avoidance responses to stimuli or behaviors that represent or bear resemblance to some aspect of a traumatic experience. Disruption of reconsolidation, the process by which reactivated memories become susceptible to modifications, is a promising approach for treating PTSD patients. However, much of what is known about fear-motivated avoidance memory reconsolidation derives from studies based on fear conditioning instead of avoidance-learning paradigms. Using a step-down inhibitory avoidance task in rats, we found that the hippocampus is involved in memory reconsolidation only when the animals acquired the avoidance response in an environment that they had previously learned as safe and showed that increased theta- and gamma-oscillation coupling during reactivation is an electrophysiological signature of this process.


Assuntos
Aprendizagem da Esquiva/fisiologia , Hipocampo/fisiologia , Consolidação da Memória/fisiologia , Alfa-Amanitina/farmacologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Ondas Encefálicas/efeitos dos fármacos , Ondas Encefálicas/fisiologia , Hipocampo/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Masculino , Consolidação da Memória/efeitos dos fármacos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA