Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ultramicroscopy ; 261: 113963, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38613941

RESUMO

We present the design, fabrication and discuss the performance of a new combined high-resolution Scanning Tunneling and Thermopower Microscope (STM/SThEM). We also describe the development of the electronic control, the user interface, the vacuum system, and arrangements to reduce acoustical noise and vibrations. We demonstrate the microscope's performance with atomic-resolution topographic images of highly oriented pyrolytic graphite (HOPG) and local thermopower measurements in the semimetal Bi2Te3. Our system offers a tool to investigate the relationship between electronic structure and thermoelectric properties at the nanoscale.

2.
J Phys Condens Matter ; 34(33)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35675807

RESUMO

In this paper, we numerically analyze the thermoelectric (TE) properties of recently synthesized graphene nanoribbon (GNR) heterostructures that are obtained as extensions of pristine armchair graphene nanoribbons (AGNRs). After simulating their band structure through a nearest-neighbor tight-binding model, we use the Landauer formalism to calculate the necessary TE coefficients, with which we obtain the electrical conductanceG, thermopowerS, thermal conductanceKe, linear-response thermocurrentIth/ΔT=GS, and figure of meritZT(using literature results for the phonon thermal conductanceKph), at room temperature. We then compare the results for the nanoribbon heterostructures with those for the pristine AGNR nanoribbons. The comparison shows that the metallic AGNRs become semiconducting (with much higherZTvalues) after the inclusion of the extensions that transform them into heterostructures and that some heterostructures have higher values ofZTwhen compared to the semiconducting pristine AGNRs from which they have originated.

3.
J Phys Condens Matter ; 34(6)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34736227

RESUMO

The application of strain to 2D materials allows manipulating the electronic, magnetic, and thermoelectric properties. These physical properties are sensitive to slight variations induced by tensile and compressive strain and the uniaxial strain direction. Herein, we take advantage of the reversible semiconductor-metal transition observed in certain monolayers to propose a hetero-bilayer device. We propose to pill up phosphorene (layered black phosphorus) and carbon monosulfide monolayers. In the first, such transition appears for positive strain, while the second appears for negative strain. Our first-principle calculations show that depending on the direction of the applied uniaxial strain; it is possible to achieve reversible control in the layer that behaves as an electronic conductor while the other layer remains as a thermal conductor. The described strain-controlled selectivity could be used in the design of novel devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA