Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 110(7): e16186, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37183532

RESUMO

PREMISE: Flower damage caused by florivores often has negative consequences for plant reproduction. However, the factors affecting plant-florivore interactions are still poorly understood, especially the role of abiotic factors and interspecific variation in florivory within ecosystems. Thus, the patterns of florivory levels and its consequences for plant communities need to be investigated further. METHODS: We assessed the influence of abiotic factors related to climatic seasonality, of phylogenetic relationships among plants, and of functional attributes associated with attractiveness to pollinators on florivory incidence and intensity in the Pantanal, the world's largest tropical wetland. Between December 2020 and November 2021, the percentage of flowers attacked (incidence) and petal area removed (intensity) by florivores were examined in 51 species from 25 families, considering flowering season, the substrate where the plants occur, and flower attributes as potentially determining factors on florivory levels. RESULTS: Phylogeny and environmental factors did not have a significant influence on florivory. The only determinant of interspecific variation in florivory incidence and intensity was flower size, where larger flowers experienced higher florivory levels regardless of season and substrate, while flower arrangement and color were not significant factors. CONCLUSIONS: Our study is one of the first to estimate the community-wide effects of biotic and abiotic factors on both the incidence and the intensity of florivory. The magnitude of this plant-florivore interaction may reduce reproductive success and entail selective pressures on plant attractiveness to pollinators.


Assuntos
Ecossistema , Áreas Alagadas , Filogenia , Flores , Reprodução , Plantas , Polinização
2.
Ecotoxicol Environ Saf ; 208: 111622, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396142

RESUMO

The continuous growth in global population since the beginning of the 20th century result in the necessity of food and energy provision favoring the intensive use of agricultural products such as pesticides. Although pesticides are important to prevent losses in the conventional chemically based agriculture, they frequently present side effects, which goes against agricultural production. The use of pesticides cause direct and indirect effects to soil organisms unbalancing essential soil processes (e.g. primary production, organic matter decomposition, nutrient cycling). Under tropical conditions, very little is known regarding the effects of pesticides to terrestrial organisms. Hence, the aim of the present study was to assess the ecotoxicological effects of the herbicide DMA® 806 BR (active ingredient: 2,4-D) and the insecticide Regent® 800 WG (active ingredient: fipronil), on terrestrial plant species (the dicot Raphanus sativus var. acanthioformis and the monocot Allium cepa), and soil invertebrates (the collembolan Folsomia candida and the enchytraeid Enchytraeus crypticus), using natural (NS) and artificial soils (TAS). For both pesticides, negative effects on non-target species were observed at concentrations lower than the doses recommended to prevent pests in sugarcane fields. For both soils, the dicot species was the most affected by the herbicide (R. sativus > A. cepa > F. candida > E. crypticus) and the collembolan species was the most affected by the insecticide (F. candida > E. crypticus = R. sativus = A. cepa). Although the order of the organisms' sensitivity for both pesticides was the same in both soils, results showed that the extent of the effects was soil dependent. Considering the ecologically relevant concentrations tested, and their severe effects to non-target organisms, it may be concluded that the use of fipronil and 2,4-D under recommended conditions may pose a risk to the terrestrial environment.


Assuntos
Ácido 2,4-Diclorofenoxiacético/toxicidade , Praguicidas/toxicidade , Pirazóis/toxicidade , Saccharum/fisiologia , Poluentes do Solo/análise , Agricultura , Animais , Artrópodes/efeitos dos fármacos , Artrópodes/fisiologia , Ecotoxicologia , Inseticidas/toxicidade , Oligoquetos/efeitos dos fármacos , Oligoquetos/fisiologia , Solo/química
3.
Front Plant Sci ; 10: 780, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275337

RESUMO

Ultraviolet-B radiation (UV-B, 280-315 nm) is an important environmental signal that regulates growth and development in plants. Two dose-dependent UV-B response pathways were described in plants: a specific one, mediated by UVR8 (the specific UV-B receptor) and an unspecific one, activated by the oxidative damage produced by radiation. The constitutively expressed receptor appears inactive as a dimer, with the two monomers dissociating upon UV-B irradiation. The monomer then interacts with COP1, an ubiquitin ligase, hindering its ability to poly-ubiquitinate transcriptional factor HY5, thus averting its degradation and activating the photomorphogenic response. HY5 induces the synthesis of proteins RUP1 and RUP2, which interact with UVR8, releasing COP1, and inducing the re-dimerization of UVR8. This mechanism has been thoroughly characterized in Arabidopsis, where studies have demonstrated that the UVR8 receptor is key in UV-B response. Although Arabidopsis importance as a model plant many mechanisms described in this specie differ in other plants. In this paper, we review the latest information regarding UV-B response mediated by UVR8 in different species, focusing on the differences reported compared to Arabidopsis. For instance, UVR8 is not only induced by UV-B but also by other agents that are expressed differentially in diverse tissues. Also, in some of the species analyzed, proteins with low homology to RUP1 and RUP2 were detected. We also discuss how UVR8 is involved in other developmental and stress processes unrelated to UV-B. We conclude that the receptor is highly versatile, showing differences among species.

4.
Curr Protein Pept Sci ; 19(4): 368-379, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-28079012

RESUMO

Cancer is the leading cause of morbidity and mortality worldwide. Therefore, the search for new and less aggressive treatments is currently the focus of the anticancer research. An attractive alternative for this purpose is the use of bioactive peptides from plants. Plants live everywhere on Earth, both on land and in water, and they are a major source of diverse molecules with pharmacological potential as antioxidant peptides. Hence, this review focuses on the importance of the antioxidant activity of terrestrial and aquatic plant peptides against cancer throughout several mechanisms. The influence of the antioxidant activity of peptides by different factors such as molecular weight and amino acid composition as a crucial factor for anticancer activity is also revised. Furthermore, the relation of antioxidant activity with anticancer property as well as safety and legal aspects of protein hydrolysates and bioactive peptides for their use in cancer treatments is discussed.


Assuntos
Antineoplásicos/química , Antioxidantes/química , Neoplasias/tratamento farmacológico , Peptídeos/química , Plantas/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Organismos Aquáticos , Humanos , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Hidrolisados de Proteína/farmacologia
5.
Mar Drugs ; 9(12): 2514-2525, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22363237

RESUMO

Plants interact with the environment by sensing "non-self" molecules called elicitors derived from pathogens or other sources. These molecules bind to specific receptors located in the plasma membrane and trigger defense responses leading to protection against pathogens. In particular, it has been shown that cell wall and storage polysaccharides from green, brown and red seaweeds (marine macroalgae) corresponding to ulvans, alginates, fucans, laminarin and carrageenans can trigger defense responses in plants enhancing protection against pathogens. In addition, oligosaccharides obtained by depolymerization of seaweed polysaccharides also induce protection against viral, fungal and bacterial infections in plants. In particular, most seaweed polysaccharides and derived oligosaccharides trigger an initial oxidative burst at local level and the activation of salicylic (SA), jasmonic acid (JA) and/or ethylene signaling pathways at systemic level. The activation of these signaling pathways leads to an increased expression of genes encoding: (i) Pathogenesis-Related (PR) proteins with antifungal and antibacterial activities; (ii) defense enzymes such as pheylalanine ammonia lyase (PAL) and lipoxygenase (LOX) which determine accumulation of phenylpropanoid compounds (PPCs) and oxylipins with antiviral, antifugal and antibacterial activities and iii) enzymes involved in synthesis of terpenes, terpenoids and/or alkaloids having antimicrobial activities. Thus, seaweed polysaccharides and their derived oligosaccharides induced the accumulation of proteins and compounds with antimicrobial activities that determine, at least in part, the enhanced protection against pathogens in plants.


Assuntos
Oligossacarídeos/farmacologia , Doenças das Plantas/imunologia , Polissacarídeos/farmacologia , Alga Marinha/química , Alginatos/farmacologia , Carragenina/farmacologia , Glucanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA