Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Entomol ; 61(5): 1232-1239, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991848

RESUMO

The Nísia Floresta National Forest, located in Rio Grande do Norte (RN), is an important remnant of the Atlantic Forest biome in Brazil. Bromeliad tanks in this forest offer suitable breeding sites for mosquito species that may act as viral vectors, thus posing an epidemiological concern. However, studies investigating the presence of immature Culicidae in natural breeding sites in RN have thus far been restricted to Caatinga vegetation. This study investigated mosquitoes and their natural breeding sites in bromeliads growing in the Nísia Floresta National Forest. From March 2013 to February 2014, monthly samples were collected from the tanks of five randomly selected bromeliads and larvitraps placed in each of the three forest management areas. Hohenbergia catingae Ule (Hohenbergia bromeliad) is an important shelter for immature mosquitoes. Culex (Microculex) was the predominant species, representing 86% of the immature mosquitoes collected. A rare occurrence of Aedes (Stegomyia) aegypti (Linnaeus, 1762) (generally associated with urban areas under high anthropogenic influence) was observed, highlighting the importance of investigating the presence of mosquitoes in different natural habitats. An analysis of species diversity revealed that species such as Culex imitator Theobald, 1903 and Culex davisi Kumm, 1933, have a strong association with bromeliads. In tire traps (larvitraps) Aedes (Stegomyia) albopictus Skuse, 1894 was predominant. Environmental changes, such as deforestation, removal of bromeliads, and climate change in the area, can influence the migration of species and adaptation to new habitats in a peridomiciliary environment around the forest, consequently the possibility of transmission of virus and other pathogens.


Assuntos
Culicidae , Florestas , Animais , Brasil , Culicidae/fisiologia , Culicidae/crescimento & desenvolvimento , Biodiversidade , Bromelia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Densidade Demográfica
2.
Ann Bot ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39021206

RESUMO

BACKGROUND: In epiphytic bromeliads, the roots used to be considered poorly functional organs in the processes of absorption and metabolization of water and nutrients, while the leaves always acted as protagonists in both functions. More recent discoveries have been changing this old view of the root system. SCOPE: In this review, we will address the old thoughts of the scientific community regarding the function performed by the roots of epiphytic bromeliads (mere holdfast structures with low physiological activity) and the importance of a reduced or lack of root system for the emergence of epiphytism. We will present indirect and direct evidence that contradicts this older hypothesis. Furthermore, the importance of the root absorptive function mainly for juvenile tankless epiphytic bromeliads and the characteristics of the root absorption process of adult epiphytic tank bromeliads will be thoroughly discussed in physiological aspects. Finally, some factors (species, substrate, environmental conditions) that influence the absorptive capability of the roots of epiphytic tank bromeliads will also be considered in this review, highlighting the importance that the absorptive role of the roots have for the plasticity of bromeliads that live on trees, which is an environment characterized by the intermittent availability of water and nutrients. CONCLUSIONS: The roots of tank-forming epiphytic bromeliads play important roles in the absorption and metabolization of nutrients and water. The importance of roots stands out mainly for juvenile tankless bromeliads since the root is the main absorptive organ. In larger plants with tank, although the leaves become the protagonists in the resource acquisition process, the roots complement the absorptive function of the leaf trichomes, resulting in a better growth of the bromeliad. The physiological and biochemical properties of the processes of absorption and distribution of resources in the tissues seem to differ between absorption by trichomes and roots.

3.
J Anim Ecol ; 91(2): 428-442, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34808001

RESUMO

The interspecific interactions within and between adjacent ecosystems strongly depend on the changes in their abiotic and biotic components. However, little is known about how climate change and biodiversity loss in a specific ecosystem can impact the multiple trophic interactions of different biological groups within and across ecosystems. We used natural microecosystems (tank-bromeliads) as a model system to investigate the main and interactive effects of aquatic warming and aquatic top predator loss (i.e. trophic downgrading) on trophic relationships in three integrated food web compartments: (a) aquatic micro-organisms, (b) aquatic macro-organisms and (c) terrestrial predators (i.e. via cross-ecosystem effects). The aquatic top predator loss substantially impacted the three food web compartments. In the aquatic macrofauna compartment, trophic downgrading increased the filter feeder richness and abundance directly and indirectly via an increase in detritivore richness, likely through a facilitative interaction. For the microbiota compartment, aquatic top predator loss had a negative effect on algae richness, probably via decreasing the input of nutrients from predator biological activities. Furthermore, the more active terrestrial predators responded more to aquatic top predator loss, via an increase in some components of aquatic macrofauna, than more stationary terrestrial predators. The aquatic trophic downgrading indirectly altered the richness and abundance of cursorial terrestrial predators, but these effects had different direction according to the aquatic functional group, filter feeder or other detritivores. The web-building predators were indirectly affected by aquatic trophic downgrading due to increased filter feeder richness. Aquatic warming did not affect the aquatic micro- or macro-organisms but did positively affect the abundance of web-building terrestrial predators. These results allow us to raise a predictive framework of how different anthropogenic changes predicted for the next decades, such as aquatic warming and top predator loss, could differentially affect multiple biological groups through interactions within and across ecosystems.


As interações interespecíficas dentro e entre ecossistemas adjacentes dependem fortemente das mudanças de seus componentes abióticos e bióticos. Entretanto, pouco se sabe sobre como mudanças climáticas e a perda de biodiversidade em um ecossistema específico pode impactar as múltiplas interações tróficas de diferentes grupos biológicos dentro e entre ecossistemas. Nós utilizamos micro ecossistemas naturais (bromélias-tanque) como sistema modelo para investigar os efeitos individuais e interativos do aquecimento e da perda de predadores aquáticos (simplificação trófica) nas relações tróficas em três compartimentos integrados da teia alimentar: i) micro-organismos aquáticos, ii) macroorganismos aquáticos e iii) predadores terrestres (via efeito entre ecossistemas). A perda de predadores de topo aquáticos afetou substancialmente os três compartimentos da rede trófica. No compartimento da macrofauna aquática, a simplificação trófica aumentou a riqueza e abundância de filtradores, direta e indiretamente, por meio de um aumento da riqueza de espécies de detritívoros, provavelmente através de uma interação de facilitação. Para o compartimento da microbiota, a perda de predadores de topo aquáticos teve um efeito negativo sobre a riqueza de espécies de algas, provavelmente por meio da diminuição da entrada de nutrientes provenientes das atividades biológicas dos predadores. Além disso, os predadores terrestres mais ativos responderam mais à perda de predadores de topo aquáticos, por meio de um aumento de alguns componentes da macrofauna aquática, do que predadores terrestres mais estacionários. A simplificação trófica aquática alterou indiretamente a riqueza e abundância de predadores cursoriais terrestres, mas esses efeitos tiveram direção diferente de acordo com o grupo funcional aquático, filtradores ou outros detritívoros. Os predadores construtores de teias foram indiretamente afetados pela simplificação trófica aquática devido ao aumento da riqueza de filtradores. O aquecimento aquático não afetou os micro ou macro organismos aquáticos, mas afetou positivamente a abundância de predadores terrestres construtores de teias. Esses resultados nos permitem levantar um quadro preditivo de como diferentes mudanças antropogênicas preditas para as próximas décadas, como o aquecimento e a perda de predadores de topo aquáticos, podem afetar diferencialmente vários grupos biológicos por meio de interações dentro e entre os ecossistemas.


Assuntos
Ecossistema , Microbiota , Animais , Organismos Aquáticos , Biodiversidade , Cadeia Alimentar , Comportamento Predatório
4.
Ecol Lett ; 24(12): 2660-2673, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34537987

RESUMO

Theory and some evidence suggest that biodiversity promotes stability. However, evidence of how trophic interactions and environmental changes modulate this relationship in multitrophic communities is lacking. Given the current scenario of biodiversity loss and climate changes, where top predators are disproportionately more affected, filling these knowledge gaps is crucial. We simulated climate warming and top predator loss in natural microcosms to investigate their direct and indirect effects on temporal stability of microbial communities and the role of underlying stabilising mechanisms. Community stability was insensitive to warming, but indirectly decreased due to top predator loss via increased mesopredator abundance and consequent reduction of species asynchrony and species stability. The magnitude of destabilising effects differed among trophic levels, being disproportionally higher at lower trophic levels (e.g. producers). Our study unravels major patterns and causal mechanisms by which trophic downgrading destabilises large food webs, regardless of climate warming scenarios.


Assuntos
Cadeia Alimentar , Microbiota , Biodiversidade , Mudança Climática , Estado Nutricional
5.
Ecology ; 99(5): 1203-1213, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29714828

RESUMO

Climate change and biodiversity loss are expected to simultaneously affect ecosystems, however research on how each driver mediates the effect of the other has been limited in scope. The multiple stressor framework emphasizes non-additive effects, but biodiversity may also buffer the effects of climate change, and climate change may alter which mechanisms underlie biodiversity-function relationships. Here, we performed an experiment using tank bromeliad ecosystems to test the various ways that rainfall changes and litter diversity may jointly determine ecological processes. Litter diversity and rainfall changes interactively affected multiple functions, but how depends on the process measured. High litter diversity buffered the effects of altered rainfall on detritivore communities, evidence of insurance against impacts of climate change. Altered rainfall affected the mechanisms by which litter diversity influenced decomposition, reducing the importance of complementary attributes of species (complementarity effects), and resulting in an increasing dependence on the maintenance of specific species (dominance effects). Finally, altered rainfall conditions prevented litter diversity from fueling methanogenesis, because such changes in rainfall reduced microbial activity by 58%. Together, these results demonstrate that the effects of climate change and biodiversity loss on ecosystems cannot be understood in isolation and interactions between these stressors can be multifaceted.


Assuntos
Mudança Climática , Ecossistema , Biodiversidade , Folhas de Planta
6.
Glob Chang Biol ; 24(8): 3715-3728, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29772087

RESUMO

Global biodiversity is eroding due to anthropogenic causes, such as climate change, habitat loss, and trophic simplification of biological communities. Most studies address only isolated causes within a single group of organisms; however, biological groups of different trophic levels may respond in particular ways to different environmental impacts. Our study used natural microcosms to investigate the predicted individual and interactive effects of warming, changes in top predator diversity, and habitat size on the alpha and beta diversity of macrofauna, microfauna, and bacteria. Alpha diversity (i.e., richness within each bromeliad) generally explained a larger proportion of the gamma diversity (partitioned in alpha and beta diversity). Overall, dissimilarity between communities occurred due to species turnover and not species loss (nestedness). Nevertheless, the three biological groups responded differently to each environmental stressor. Microfauna were the most sensitive group, with alpha and beta diversity being affected by environmental changes (warming and habitat size) and trophic structure (diversity of top predators). Macrofauna alpha and beta diversity was sensitive to changes in predator diversity and habitat size, but not warming. In contrast, the bacterial community was not influenced by the treatments. The community of each biological group was not mutually concordant with the environmental and trophic changes. Our results demonstrate that distinct anthropogenic impacts differentially affect the components of macro and microorganism diversity through direct and indirect effects (i.e., bottom-up and top-down effects). Therefore, a multitrophic and multispecies approach is necessary to assess the effects of different anthropogenic impacts on biodiversity.


Assuntos
Biodiversidade , Mudança Climática , Cadeia Alimentar , Água Doce , Comportamento Predatório , Animais
7.
Ecol Lett ; 21(1): 72-82, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29098798

RESUMO

Global change affects ecosystem functioning both directly by modifications in physicochemical processes, and indirectly, via changes in biotic metabolism and interactions. Unclear, however, is how multiple anthropogenic drivers affect different components of community structure and the performance of multiple ecosystem functions (ecosystem multifunctionality). We manipulated small natural freshwater ecosystems to investigate how warming and top predator loss affect seven ecosystem functions representing two major dimensions of ecosystem functioning, productivity and metabolism. We investigated their direct and indirect effects on community diversity and standing stock of multitrophic macro and microorganisms. Warming directly increased multifunctional ecosystem productivity and metabolism. In contrast, top predator loss indirectly affected multifunctional ecosystem productivity via changes in the diversity of detritivorous macroinvertebrates, but did not affect ecosystem metabolism. In addition to demonstrating how multiple anthropogenic drivers have different impacts, via different pathways, on ecosystem multifunctionality components, our work should further spur advances in predicting responses of ecosystems to multiple simultaneous environmental changes.


Assuntos
Biodiversidade , Ecossistema , Cadeia Alimentar , Água Doce
8.
Glob Chang Biol ; 23(2): 673-685, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27344007

RESUMO

Climate change will alter the distribution of rainfall, with potential consequences for the hydrological dynamics of aquatic habitats. Hydrological stability can be an important determinant of diversity in temporary aquatic habitats, affecting species persistence and the importance of predation on community dynamics. As such, prey are not only affected by drought-induced mortality but also the risk of predation [a non-consumptive effect (NCE)] and actual consumption by predators [a consumptive effect (CE)]. Climate-induced changes in rainfall may directly, or via altered hydrological stability, affect predator-prey interactions and their cascading effects on the food web, but this has rarely been explored, especially in natural food webs. To address this question, we performed a field experiment using tank bromeliads and their aquatic food web, composed of predatory damselfly larvae, macroinvertebrate prey and bacteria. We manipulated the presence and consumption ability of damselfly larvae under three rainfall scenarios (ambient, few large rainfall events and several small rainfall events), recorded the hydrological dynamics within bromeliads and examined the effects on macroinvertebrate colonization, nutrient cycling and bacterial biomass and turnover. Despite our large perturbations of rainfall, rainfall scenario had no effect on the hydrological dynamics of bromeliads. As a result, macroinvertebrate colonization and nutrient cycling depended on the hydrological stability of bromeliads, with no direct effect of rainfall or predation. In contrast, rainfall scenario determined the direction of the indirect effects of predators on bacteria, driven by both predator CEs and NCEs. These results suggest that rainfall and the hydrological stability of bromeliads had indirect effects on the food web through changes in the CEs and NCEs of predators. We suggest that future studies should consider the importance of the variability in hydrological dynamics among habitats as well as the biological mechanisms underlying the ecological responses to climate change.


Assuntos
Mudança Climática , Cadeia Alimentar , Animais , Bactérias , Bromeliaceae , Ecologia , Ecossistema , Insetos , Comportamento Predatório
9.
Plant Physiol Biochem ; 108: 400-411, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27552178

RESUMO

Guzmania monostachia is an epiphytic heteroblastic bromeliad that exhibits rosette leaves forming water-holding tanks at maturity. Different portions along its leaf blades can display variable degrees of crassulacean acid metabolism (CAM) up-regulation under drought. Since abscisic acid (ABA) can act as an important long-distance signal, we conducted a joint investigation of ontogenetic and drought impacts on CAM intensity and ABA levels in different leaf groups within the G. monostachia rosette. For this, three groups of leaves were analysed according to their position within the mature-tank rosette (i.e., younger, intermediate, and older leaves) to characterize the general growth patterns and magnitude of drought-modulated CAM expression. CAM activity was evaluated by analysing key molecules in the biochemical machinery of this photosynthetic pathway, while endogenous ABA content was comparatively measured in different portions of each leaf group after seven days under well-watered (control) or drought treatment. The results revealed that G. monostachia shows more uniform morphological characteristics along the leaves when in the atmospheric stage. The drought treatment of mature-tank rosettes generally induced in older leaves a more severe water loss, followed by the lowest CAM activity and a higher increase in ABA levels, while younger leaves showed an opposite response. Therefore, leaf groups at distinct ontogenetic stages within the tank rosette of G. monostachia responded to drought with variable degrees of water loss and CAM expression. ABA seems to participate in this tissue-compartmented response as a long-distance signalling molecule, transmitting the drought-induced signals originated in older leaves towards the younger ones.


Assuntos
Ácido Abscísico/metabolismo , Bromeliaceae/metabolismo , Secas , Folhas de Planta/metabolismo , Bromeliaceae/fisiologia , Fotossíntese , Folhas de Planta/anatomia & histologia , Regulação para Cima , Água/metabolismo
10.
J Eukaryot Microbiol ; 62(6): 737-49, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25963550

RESUMO

This study evaluated the influence of rainfall amount on the abundance, species richness, and species occurrence and abundance distribution of the ciliate community associated with the bromeliad Aechmea distichantha. The plants were collected from a rock wall of about 10-km long at the left bank of Paraná River. We assessed the effects of both spatial and temporal variables on the community attributes, as well as whether plants geographically closer have a similar abundance distribution and species composition. The ciliate community was substantially distinct between both hydrological periods, with greater values of species richness and abundance in the rainy period. No spatial structuring (differences in the species occurrence and abundance distribution among strata) or geographical similarity (similarity in ciliate species composition among the plants) was found. Multiple regression analysis showed a positive relationship only between the ciliate abundances and water volumes for both periods. Although few of the formulated predictions were confirmed, our study provides valuable information on the ecological aspects of the ciliate community inhabiting bromeliad phytotelmata.


Assuntos
Bromeliaceae/crescimento & desenvolvimento , Cilióforos/crescimento & desenvolvimento , Água Doce/parasitologia , Rios/parasitologia , Análise de Variância , Biodiversidade , Biota , Brasil , Bromeliaceae/classificação , Cilióforos/isolamento & purificação , Ecossistema , Genótipo , Plâncton/crescimento & desenvolvimento , Chuva , Estações do Ano , Clima Tropical
11.
Ann Bot ; 112(5): 919-26, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23864002

RESUMO

BACKGROUND AND AIMS: Epiphytism imposes physiological constraints resulting from the lack of access to the nutrient sources available to ground-rooted plants. A conspicuous adaptation in response to that lack is the phytotelm (plant-held waters) of tank-bromeliad species that are often nutrient-rich. Associations with terrestrial invertebrates also result in higher plant nutrient acquisition. Assuming that tank-bromeliads rely on reservoir-assisted nutrition, it was hypothesized that the dual association with mutualistic ants and the phytotelm food web provides greater nutritional benefits to the plant compared with those bromeliads involved in only one of these two associations. METHODS: Quantitative (water volume, amount of fine particulate organic matter, predator/prey ratio, algal density) and qualitative variables (ant-association and photosynthetic pathways) were compared for eight tank- and one tankless-bromeliad morphospecies from French Guiana. An analysis was also made of which of these variables affect nitrogen acquisition (leaf N and δ(15)N). KEY RESULTS: All variables were significantly different between tank-bromeliad species. Leaf N concentrations and leaf δ(15)N were both positively correlated with the presence of mutualistic ants. The amount of fine particulate organic matter and predator/prey ratio had a positive and negative effect on leaf δ(15)N, respectively. Water volume was positively correlated with leaf N concentration whereas algal density was negatively correlated. Finally, the photosynthetic pathway (C3 vs. CAM) was positively correlated with leaf N concentration with a slightly higher N concentration for C3-Tillandsioideae compared with CAM-Bromelioideae. CONCLUSIONS: The study suggests that some of the differences in N nutrition between bromeliad species can be explained by the presence of mutualistic ants. From a nutritional standpoint, it is more advantageous for a bromeliad to use myrmecotrophy via its roots than to use carnivory via its tank. The results highlight a gap in our knowledge of the reciprocal interactions between bromeliads and the various trophic levels (from bacteria to large metazoan predators) that intervene in reservoir-assisted nutrition.


Assuntos
Formigas/fisiologia , Bromeliaceae/fisiologia , Nitrogênio/metabolismo , Água/metabolismo , Animais , Guiana Francesa , Isótopos de Nitrogênio/análise , Fotossíntese , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA