Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732909

RESUMO

(1) Background: Home sleep apnea testing, known as polysomnography type 3 (PSG3), underestimates respiratory events in comparison with in-laboratory polysomnography type 1 (PSG1). Without head electrodes for scoring sleep and arousal, in a home environment, patients feel unfettered and move their bodies more naturally. Adopting a natural position may decrease obstructive sleep apnea (OSA) severity in PSG3, independently of missing hypopneas associated with arousals. (2) Methods: Patients with suspected OSA performed PSG1 and PSG3 in a randomized sequence. We performed an additional analysis, called reduced polysomnography, in which we blindly reassessed all PSG1 tests to remove electroencephalographic electrodes, electrooculogram, and surface electromyography data to estimate the impact of not scoring sleep and arousal-based hypopneas on the test results. A difference of 15 or more in the apnea-hypopnea index (AHI) between tests was deemed clinically relevant. We compared the group of patients with and without clinically relevant differences between lab and home tests (3) Results: As expected, by not scoring sleep, there was a decrease in OSA severity in the lab test, similar to the home test results. The group of patients with clinically relevant differences between lab and home tests presented more severe OSA in the lab compared to the other group (mean AHI, 42.5 vs. 20.2 events/h, p = 0.002), and this difference disappeared in the home test. There was no difference between groups in the shift of OSA severity by abolishing sleep scoring in the lab. However, by comparing lab and home tests, there were greater variations in supine AHI and time spent in the supine position in the group with a clinically relevant difference, either with or without scoring sleep, showing an impact of the site of the test on body position during sleep. These variations presented as a marked increase or decrease in supine outcomes according to the site of the test, with no particular trend. (4) Conclusions: In-lab polysomnography may artificially increase OSA severity in a subset of patients by inducing marked changes in body position compared to home tests. The location of the sleep test seems to interfere with the evaluation of patients with more severe OSA.


Assuntos
Polissonografia , Apneia Obstrutiva do Sono , Humanos , Polissonografia/métodos , Apneia Obstrutiva do Sono/diagnóstico , Apneia Obstrutiva do Sono/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Postura/fisiologia , Adulto , Eletroencefalografia/métodos , Idoso
2.
Rev. habanera cienc. méd ; 15(5): 0-0, set.-oct. 2016. ilus, tab
Artigo em Espanhol | CUMED | ID: cum-68813

RESUMO

Introducción: El uso de curvas de crecimiento para supervisar el desarrollo físico de los niños es esencial en la práctica pediátrica. Las normas cubanas de talla se elaboraron en la década de los 70 siguiendo procedimientos recomendados en ese momento. En los últimos años se han obtenido métodos estadísticos automatizados capaces de modelar correctamente el proceso del crecimiento. La OMS, en su Estudio Multicéntrico, utilizó el método Box-Cox PowerExponential (BCPE). Es importante determinar si introducir este nuevo procedimiento para construir curvas induce modificaciones en los valores de los perpercentiles que habitualmente se estiman. Objetivo: evaluar las discrepancias entre los valores de los perpercentiles estimados por ambos procedimientos. Material y Métodos: se usaron los datos de longitud en decúbito supino y estatura, de sujetos cubanos menores de 20 años medidos en el primer Estudio Nacional de Crecimiento y Desarrollo (ENCD). Se construyeron curvas usando el método BCPE implementado en el paquete GAMLSS de R. Las diferencias se evaluaron comparando los valores de los perpercentiles suavizados obtenidos por ambos métodos.Resultados: los modelos que mejor ajustaron fueron: para la longitud en decúbito supino, sexo femenino NO (GLµ=10;GLϭ=5;edad0.001); sexo masculino NO(GLlµ=14;GLϭ=6;edad0.006); para estatura, sexo femenino NO(GLµ=16;GLϭ=10;edad0.544); sexo masculino NO(GLµ=16;GLϭ=12;edad0.117). Las estimaciones de los perpercentiles de estatura fueron muy similares con ambos procedimientos. En los perpercentiles extremos de la longitud en decúbito supino se detectaron diferencias, debidas muy probablemente a correcciones introducidas en el cómputo de la desviación estándar durante el procesamiento del ENCD. Conclusiones: para la longitud en decúbito supino se detectaron diferencias, no así en la estatura. Se recomienda el uso del procedimiento automatizado pues disminuye considerablemente la carga subjetiva presente en el método anterior(AU)


Introduction: The use of growth curves to monitor physical development in children is essential for pediatric health care. Cuban height charts were created during the seventies decade following technics recommended at that time. In the last years, statistical methods based computational technics have been obtained a better model pattern for growth process. In particular WHO in the Multicenter Growth Study used the Box-Cox Power Exponential (BCPE) method. It is important to determine whether the application of such procedure in drawing curves introduce changes in the percentiles' estimates commonly used. Objective: To evaluate discrepancies between percentiles' estimates from both methods. Material and methods: supine-decubitus length data and height from Cubans under 20 years old from the first National Growth and Development Study (ENCD) were examined. Perpercentiles were estimated viEl método BCPE a the BCPE method implemented in GAMLSS' package supported in R language. Comparison of smoothed percentiles obtained from both procedures were plotted to evaluate discrepancies. Results: The best fitted models were: for female supine-decubitus lengths the NO (DFµ=10;DFϭ=5;age0.001) and NO(DFµ=14;DFϭ=6;age0.006) for male respectively and NO(DFµ=16;DFϭ=10;age0.544) and NO(DFµ=16;DFϭ=12;age0.117) for female and male height. Height percentiles estimates were closely enough using either method. Some differences were detected for length percentiles, possibly due to computational corrections done while calculating standard deviations of ENCD.Conclusions: Some differences were detected for length percentiles estimations but not for the height. The use of computational procedure is recommended because its considerable reduction of the subjective charge as compare with the method used before(AU)


Assuntos
Humanos , Criança , Adolescente , Peso-Estatura , Razão Cintura-Estatura , Estatura , Estatura-Idade , Estudos Multicêntricos como Assunto/métodos
3.
Rev. habanera cienc. méd ; 15(5): 0-0, set.-oct. 2016. graf, tab
Artigo em Espanhol | LILACS, CUMED | ID: biblio-845240

RESUMO

Introducción: El uso de curvas de crecimiento para supervisar el desarrollo físico de los niños es esencial en la práctica pediátrica. Las normas cubanas de talla se elaboraron en la década de los 70 siguiendo procedimientos recomendados en ese momento. En los últimos años se han obtenido métodos estadísticos automatizados capaces de modelar correctamente el proceso del crecimiento. La OMS, en su Estudio Multicéntrico, utilizó el método Box-Cox PowerExponential (BCPE). Es importante determinar si introducir este nuevo procedimiento para construir curvas induce modificaciones en los valores de los perpercentiles que habitualmente se estiman. Objetivo: evaluar las discrepancias entre los valores de los perpercentiles estimados por ambos procedimientos. Material y Métodos: se usaron los datos de longitud en decúbito supino y estatura, de sujetos cubanos menores de 20 años medidos en el primer Estudio Nacional de Crecimiento y Desarrollo (ENCD). Se construyeron curvas usando el método BCPE implementado en el paquete GAMLSS de R. Las diferencias se evaluaron comparando los valores de los perpercentiles suavizados obtenidos por ambos métodos. Resultados: los modelos que mejor ajustaron fueron: para la longitud en decúbito supino, sexo femenino NO (GLµ=10;GLÏ­=5;edad0.001); sexo masculino NO(GLlµ=14;GLÏ­=6;edad0.006); para estatura, sexo femenino NO(GLµ=16;GLÏ­=10;edad0.544); sexo masculino NO(GLµ=16;GLÏ­=12;edad0.117). Las estimaciones de los perpercentiles de estatura fueron muy similares con ambos procedimientos. En los perpercentiles extremos de la longitud en decúbito supino se detectaron diferencias, debidas muy probablemente a correcciones introducidas en el cómputo de la desviación estándar durante el procesamiento del ENCD. Conclusiones: para la longitud en decúbito supino se detectaron diferencias, no así en la estatura. Se recomienda el uso del procedimiento automatizado pues disminuye considerablemente la carga subjetiva presente en el método anterior(AU)


Introduction: The use of growth curves to monitor physical development in children is essential for pediatric health care. Cuban height charts were created during the seventies decade following technics recommended at that time. In the last years, statistical methods based computational technics have been obtained a better model pattern for growth process. In particular WHO in the Multicenter Growth Study used the Box-Cox Power Exponential (BCPE) method. It is important to determine whether the application of such procedure in drawing curves introduce changes in the percentiles' estimates commonly used. Objective: To evaluate discrepancies between percentiles' estimates from both methods. Material and methods: supine-decubitus length data and height from Cubans under 20 years old from the first National Growth and Development Study (ENCD) were examined. Perpercentiles were estimated viEl método BCPE a the BCPE method implemented in GAMLSS' package supported in R language. Comparison of smoothed percentiles obtained from both procedures were plotted to evaluate discrepancies. Results: The best fitted models were: for female supine-decubitus lengths the NO (DFµ=10;DFÏ­=5;age0.001) and NO(DFµ=14;DFÏ­=6;age0.006) for male respectively and NO(DFµ=16;DFÏ­=10;age0.544) and NO(DFµ=16;DFÏ­=12;age0.117) for female and male height. Height percentiles estimates were closely enough using either method. Some differences were detected for length percentiles, possibly due to computational corrections done while calculating standard deviations of ENCD. Conclusions: Some differences were detected for length percentiles estimations but not for the height. The use of computational procedure is recommended because its considerable reduction of the subjective charge as compare with the method used before(AU)


Assuntos
Humanos , Masculino , Feminino , Recém-Nascido , Lactente , Pré-Escolar , Criança , Adolescente , Pediatria , Pesos e Medidas Corporais/métodos , Crescimento e Desenvolvimento/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA