Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Front Plant Sci ; 11: 717, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714338

RESUMO

The evergreen C3 plant Calotropis procera is native to arid environments. Thus, it grows under high vapor pressure deficit (VPD), intense light, and severe drought conditions. We measured several ecophysiological traits in C. procera plants growing in semi-arid and seacoast environments to assess the attributes that support its photosynthetic performance under these contrasting conditions. Gas exchange analysis, primary metabolism content, nutrients, the antioxidant system, and leaf anatomy traits were measured under field conditions. In the semi-arid environment, C. procera was exposed to a prolonged drought season with a negative soil water balance during the 2 years of the study. Calotropis procera plants were exposed to a positive soil water balance only in the rainy season in the seacoast environment. The leaves of C. procera showed the same photosynthetic rate under high or low VPD, even in dry seasons with a negative soil water balance. Photosynthetic pigments, leaf sugar content, and the activity of antioxidant enzymes were increased in both places in the dry season. However, the anatomical adjustments were contrasting: while, in the semi-arid environment, mesophyll thickness increased in the driest year, in the seacoast environment, the cuticle thickness and trichome density were increased. The ability to maintain photosynthetic performance through the seasons would be supported by new leaves with different morpho-anatomical traits, with contrasting changes between semi-arid and seacoast environments. Furthermore, our results suggest that an efficient antioxidative system and leaf sugar dynamics can contribute to protecting the photosynthetic machinery even under severe drought.

3.
Plant Physiol Biochem ; 118: 589-599, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28793281

RESUMO

Calotropis procera is a C3 plant native from arid environmental zones. It is an evergreen, shrubby, non-woody plant with intense photosynthetic metabolism during the dry season. We measured photosynthetic parameters and leaf biochemical traits, such as gas exchange, photochemical parameters, A/Ci analysis, organic solutes, and antioxidant enzymes under controlled conditions in potted plants during drought stress, and following recovery conditions to obtain a better insight in the drought stress responses of C. procera. Indeed, different processes contribute to the drought stress resilience of C. procera and to the fast recovery after rehydration. The parameters analyzed showed that C. procera has a high efficiency for energy dissipation. The photosynthetic machinery is protected by a robust antioxidant system and photoprotective mechanisms such as alternative pathways for electrons (photorespiration and day respiration). Under severe drought stress, increased stomatal limitation and decreased biochemical limitation permitted C. procera to maintain maximum rate of Rubisco carboxylation (Vc,max) and photosynthetic rate (Amax). On the other hand, limitation of stomatal or mesophyll CO2 diffusion did not impair fast recovery, maintaining Vc,max, chloroplast CO2 concentration (Cc) and mesophyll conductance (gm) unchanged while electron flow used for RuBP carboxylation (Jc) and Amax increased. The ability to tolerate drought stress and the fast recovery of this evergreen C3 species was also due to leaf anti-oxidative stress enzyme activity, and photosynthetic pigments. Thus, these different drought tolerance mechanisms allowed high performance of photosynthetic metabolism by drought stressed plants during the re-watering period.


Assuntos
Calotropis/metabolismo , Fotossíntese , Estações do Ano , Estresse Fisiológico , Desidratação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA