Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 599(21): 4925-4948, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34510468

RESUMO

Active expiration is essential for increasing pulmonary ventilation during high chemical drive (hypercapnia). The lateral parafacial (pFL ) region, which contains expiratory neurones, drives abdominal muscles during active expiration in response to hypercapnia. However, the electrophysiological properties and synaptic mechanisms determining the activity of pFL expiratory neurones, as well as the specific conditions for their emergence, are not fully understood. Using whole cell electrophysiology and single cell quantitative RT-PCR techniques, we describe the intrinsic electrophysiological properties, the phenotype and the respiratory-related synaptic inputs to the pFL expiratory neurones, as well as the mechanisms for the expression of their expiratory activity under conditions of hypercapnia-induced active expiration, using in situ preparations of juvenile rats. We also evaluated whether these neurones possess intrinsic CO2 /[H+ ] sensitivity and burst generating properties. GABAergic and glycinergic inhibition during inspiration and expiration suppressed the activity of glutamatergic pFL expiratory neurones in normocapnia. In hypercapnia, these neurones escape glycinergic inhibition and generate burst discharges at the end of expiration. Evidence for the contribution of post-inhibitory rebound, CaV 3.2 isoform of T-type Ca2+ channels and intracellular [Ca2+ ] is presented. Neither intrinsic bursting properties, mediated by persistent Na+ current, nor CO2 /[H+ ] sensitivity or expression of CO2 /[H+ ] sensitive ion channels/receptors (TASK or GPR4) were observed. On the other hand, hyperpolarisation-activated cyclic nucleotide-gated and twik-related K+ leak channels were recorded. Post-synaptic disinhibition and the intrinsic electrophysiological properties of glutamatergic neurones play important roles in the generation of the expiratory oscillations in the pFL region during hypercapnia in rats. KEY POINTS: Hypercapnia induces active expiration in rats and the recruitment of a specific population of expiratory neurones in the lateral parafacial (pFL ) region. Post-synaptic GABAergic and glycinergic inhibition both suppress the activity of glutamatergic pFL neurones during inspiratory and expiratory phases in normocapnia. Hypercapnia reduces glycinergic inhibition during expiration leading to burst generation by pFL neurones; evidence for a contribution of post-inhibitory rebound, voltage-gated Ca2+ channels and intracellular [Ca2+ ] is presented. pFL glutamatergic expiratory neurones are neither intrinsic burster neurones, nor CO2 /[H+ ] sensors, and do not express CO2 /[H+ ] sensitive ion channels or receptors. Post-synaptic disinhibition and the intrinsic electrophysiological properties of glutamatergic neurones both play important roles in the generation of the expiratory oscillations in the pFL region during hypercapnia in rats.


Assuntos
Expiração , Neurônios , Animais , Hipercapnia , Ratos
2.
J Physiol ; 599(5): 1611-1630, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369743

RESUMO

KEY POINTS: Cartwheel neurons provide potent inhibition to fusiform neurons in the dorsal cochlear nucleus (DCN). Most cartwheel neurons fire action potentials spontaneously, but the ion channels responsible for this intrinsic activity are unknown. We investigated the ion channels responsible for the intrinsic firing of cartwheel neurons and the stable resting membrane potential found in a fraction of these neurons (quiet neurons). Among the ion channels controlling membrane potential of cartwheel neurons, the presence of open ATP-sensitive potassium channels (KATP ) is responsible for the existence of quiet neurons. Our results pinpoint KATP channel modulation as a critical factor controlling the firing of cartwheel neurons. Hence, it is a crucial channel influencing the balance of excitation and inhibition in the DCN. ABSTRACT: Cartwheel neurons from the dorsal cochlear nucleus (DCN) are glycinergic interneurons and the primary source of inhibition on the fusiform neurons, the DCN's principal excitatory neuron. Most cartwheel neurons present spontaneous firing (active neurons), producing a steady inhibitory tone on fusiform neurons. In contrast, a small fraction of these neurons do not fire spontaneously (quiet neurons). Hyperactivity of fusiform neurons is seen in animals with behavioural evidence of tinnitus. Because of its relevance in controlling the excitability of fusiform neurons, we investigated the ion channels responsible for the spontaneous firing of cartwheel neurons in DCN slices from rats. We found that quiet neurons presented an outward conductance not seen in active neurons, which generates a stable resting potential. This current was sensitive to tolbutamide, an ATP-sensitive potassium channel (KATP ) antagonist. After inhibition with tolbutamide, quiet neurons start to fire spontaneously, while the active neurons were not affected. On the other hand, in active neurons, KATP agonist diazoxide activated a conductance similar to quiet neurons' KATP conductance and stopped spontaneous firing. According to the effect of KATP channels on cartwheel neuron firing, glycinergic neurotransmission in DCN was increased by tolbutamide and decreased by diazoxide. Our results reveal a role of KATP channels in controlling the spontaneous firing of neurons not involved in fuel homeostasis.


Assuntos
Núcleo Coclear , Potenciais de Ação , Trifosfato de Adenosina , Animais , Interneurônios , Ratos , Transmissão Sináptica
3.
J Neurophysiol ; 119(6): 2358-2372, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29561202

RESUMO

Slow repetitive burst firing by hyperpolarized thalamocortical (TC) neurons correlates with global slow rhythms (<4 Hz), which are the physiological oscillations during non-rapid eye movement sleep or pathological oscillations during idiopathic epilepsy. The pacemaker activity of TC neurons depends on the expression of several subthreshold conductances, which are modulated in a behaviorally dependent manner. Here we show that upregulation of the small and neglected inward rectifier potassium current IKir induces repetitive burst firing at slow and delta frequency bands. We demonstrate this in mouse TC neurons in brain slices by manipulating the Kir maximum conductance with dynamic clamp. We also performed a thorough theoretical analysis that explains how the unique properties of IKir enable this current to induce slow periodic bursting in TC neurons. We describe a new ionic mechanism based on the voltage- and time-dependent interaction of IKir and hyperpolarization-activated cationic current Ih that endows TC neurons with the ability to oscillate spontaneously at very low frequencies, even below 0.5 Hz. Bifurcation analysis of conductance-based models of increasing complexity demonstrates that IKir induces bistability of the membrane potential at the same time that it induces sustained oscillations in combination with Ih and increases the robustness of low threshold-activated calcium current IT-mediated oscillations. NEW & NOTEWORTHY The strong inwardly rectifying potassium current IKir of thalamocortical neurons displays a region of negative slope conductance in the current-voltage relationship that generates potassium currents activated by hyperpolarization. Bifurcation analysis shows that IKir induces bistability of the membrane potential; generates sustained subthreshold oscillations by interacting with the hyperpolarization-activated cationic current Ih; and increases the robustness of oscillations mediated by the low threshold-activated calcium current IT. Upregulation of IKir in thalamocortical neurons induces repetitive burst firing at slow and delta frequency bands (<4 Hz).


Assuntos
Relógios Biológicos , Neurônios/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Núcleos Talâmicos/fisiologia , Animais , Ritmo Delta , Potenciais da Membrana , Camundongos , Neurônios/metabolismo , Núcleos Talâmicos/citologia
5.
Front Cell Neurosci ; 10: 249, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27833532

RESUMO

In a neuronal population, several combinations of its ionic conductances are used to attain a specific firing phenotype. Some neurons present heterogeneity in their firing, generally produced by expression of a specific conductance, but how additional conductances vary along in order to homeostatically regulate membrane excitability is less known. Dorsal cochlear nucleus principal neurons, fusiform neurons, display heterogeneous spontaneous action potential activity and thus represent an appropriate model to study the role of different conductances in establishing firing heterogeneity. Particularly, fusiform neurons are divided into quiet, with no spontaneous firing, or active neurons, presenting spontaneous, regular firing. These modes are determined by the expression levels of an intrinsic membrane conductance, an inwardly rectifying potassium current (IKir). In this work, we tested whether other subthreshold conductances vary homeostatically to maintain membrane excitability constant across the two subtypes. We found that Ih expression covaries specifically with IKir in order to maintain membrane resistance constant. The impact of Ih on membrane resistance is dependent on the level of IKir expression, being much smaller in quiet neurons with bigger IKir, but Ih variations are not relevant for creating the quiet and active phenotypes. Finally, we demonstrate that the individual proportion of each conductance, and not their absolute conductance, is relevant for determining the neuronal firing mode. We conclude that in fusiform neurons the variations of their different subthreshold conductances are limited to specific conductances in order to create firing heterogeneity and maintain membrane homeostasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA