Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Mol Biol ; 108(4-5): 307-323, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35006475

RESUMO

KEY MESSAGE: This review outlines research performed in the last two decades on the structural, kinetic, regulatory and evolutionary aspects of ADP-glucose pyrophosphorylase, the regulatory enzyme for starch biosynthesis. ADP-glucose pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in the pathway of glycogen and starch synthesis in bacteria and plants, respectively. Plant ADP-Glc PPase is a heterotetramer allosterically regulated by metabolites and post-translational modifications. In this review, we focus on the three-dimensional structure of the plant enzyme, the amino acids that bind the regulatory molecules, and the regions involved in transmitting the allosteric signal to the catalytic site. We provide a model for the evolution of the small and large subunits, which produce heterotetramers with distinct catalytic and regulatory properties. Additionally, we review the various post-translational modifications observed in ADP-Glc PPases from different species and tissues. Finally, we discuss the subcellular localization of the enzyme found in grain endosperm from grasses, such as maize and rice. Overall, this work brings together research performed in the last two decades to better understand the multiple mechanisms involved in the regulation of ADP-Glc PPase. The rational modification of this enzyme could improve the yield and resilience of economically important crops, which is particularly important in the current scenario of climate change and food shortage.


Assuntos
Evolução Molecular , Glucose-1-Fosfato Adenililtransferase/química , Glucose-1-Fosfato Adenililtransferase/fisiologia , Plantas/enzimologia , Regulação Alostérica , Glucose-1-Fosfato Adenililtransferase/genética , Modelos Moleculares , Conformação Proteica , Amido/biossíntese , Amido/química
2.
Front Plant Sci ; 11: 572080, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123181

RESUMO

In different lineages of C4 plants, the release of CO2 by decarboxylation of a C4 acid near rubisco is catalyzed by NADP-malic enzyme (ME) or NAD-ME, and the facultative use of phosphoenolpyruvate carboxykinase. The co-option of gene lineages during the evolution of C4-NADP-ME has been thoroughly investigated, whereas that of C4-NAD-ME has received less attention. In this work, we aimed at elucidating the mechanism of recruitment of NAD-ME for its function in the C4 pathway by focusing on the eudicot family Cleomaceae. We identified a duplication of NAD-ME in vascular plants that generated the two paralogs lineages: α- and ß-NAD-ME. Both gene lineages were retained across seed plants, and their fixation was likely driven by a degenerative process of sub-functionalization, which resulted in a NAD-ME operating primarily as a heteromer of α- and ß-subunits. We found most angiosperm genomes maintain a 1:1 ß-NAD-ME/α-NAD-ME (ß/α) relative gene dosage, but with some notable exceptions mainly due to additional duplications of ß-NAD-ME subunits. For example, a significantly high proportion of species with C4-NAD-ME-type photosynthesis have a non-1:1 ratio of ß/α. In the Brassicales, we found C4 species with a 2:1 ratio due to a ß-NAD-ME duplication (ß1 and ß2); this was also observed in the C3 Tarenaya hassleriana and Brassica crops. In the independently evolved C4 species, Gynandropsis gynandra and Cleome angustifolia, all three genes were affected by C4 evolution with α- and ß1-NAD-ME driven by adaptive selection. In particular, the ß1-NAD-MEs possess many differentially substituted amino acids compared with other species and the ß2-NAD-MEs of the same species. Five of these amino acids are identically substituted in ß1-NAD-ME of G. gynandra and C. angustifolia, two of them were identified as positively selected. Using synteny analysis, we established that ß-NAD-ME duplications were derived from ancient polyploidy events and that α-NAD-ME is in a unique syntenic context in both Cleomaceae and Brassicaceae. We discuss our hypotheses for the evolution of NAD-ME and its recruitment for C4 photosynthesis. We propose that gene duplications provided the basis for the recruitment of NAD-ME in C4 Cleomaceae and that all members of the NAD-ME gene family have been adapted to fit the C4-biochemistry. Also, one of the ß-NAD-ME gene copies was independently co-opted for its function in the C4 pathway.

3.
Mol Biol Evol ; 34(12): 3089-3098, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28961791

RESUMO

Gene duplication is thought to play a major role in phenotypic evolution. Yet the forces involved in the functional divergence of young duplicate genes remain unclear. Here, we use population-genetic inference to elucidate the role of natural selection in the functional evolution of young duplicate genes in Drosophila melanogaster. We find that negative selection acts on young duplicates with ancestral functions, and positive selection on those with novel functions, suggesting that natural selection may determine whether and how young duplicate genes are retained. Moreover, evidence of natural selection is strongest in protein-coding regions and 3' UTRs of young duplicates, indicating that selection may primarily target encoded proteins and regulatory sequences specific to 3' UTRs. Further analysis reveals that natural selection acts immediately after duplication and weakens over time, possibly explaining the observed bias toward the acquisition of new functions by young, rather than old, duplicate gene copies. Last, we find an enrichment of testis-related functions in young duplicates that underwent recent positive selection, but not in young duplicates that did not undergo recent positive selection, or in old duplicates that either did or did not undergo recent positive selection. Thus, our findings reveal that natural selection is a key player in the functional evolution of young duplicate genes, acts rapidly and in a region-specific manner, and may underlie the origin of novel testis-specific phenotypes in Drosophila.


Assuntos
Drosophila melanogaster/genética , Duplicação Gênica/genética , Seleção Genética/genética , Regiões 3' não Traduzidas/genética , Animais , Evolução Biológica , Bases de Dados de Ácidos Nucleicos , Evolução Molecular , Genes Duplicados/genética , Genética Populacional/métodos , Fases de Leitura Aberta/genética , Filogenia
4.
Front Genet ; 6: 227, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26217376

RESUMO

Gene duplication is a recurring phenomenon in genome evolution and a major driving force in the gain of biological functions. Here, we examine the role of gene duplication in the origin and maintenance of moonlighting proteins, with special focus on functional redundancy and innovation, molecular tradeoffs, and genetic robustness. An overview of specific examples-mainly from yeast-suggests a widespread conservation of moonlighting behavior in duplicate genes after long evolutionary times. Dosage amplification and incomplete subfunctionalization appear to be prevalent in the maintenance of multifunctionality. We discuss the role of gene-expression divergence and paralog responsiveness in moonlighting proteins with overlapping biochemical properties. Future studies analyzing multifunctional genes in a more systematic and comprehensive manner will not only enable a better understanding of how this emerging class of protein behavior originates and is maintained, but also provide new insights on the mechanisms of evolution by gene duplication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA