Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Pharm Des ; 28(34): 2800-2824, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909281

RESUMO

Topoisomerase inhibitors are extensively used in cancer chemotherapy. In the process of identifying novel anticancer compounds, biological evaluations are crucial and include, among others, the use of in silico and in vitro approaches. This work aimed to present recent research involving the obtainment and in silico and in vitro evaluation of topoisomerase I, II, and double inhibitors, of synthetic and natural origin, as potential compounds against tumor cells, in addition to proposing the construction of a desirable enzyme catalytic site. Therefore, it was observed that most Topoisomerase I inhibitors presented medium to large structures, with a rigid portion and a flexible region. In contrast, Topoisomerase IIα inhibitors showed medium and large structural characteristics, in addition to the planarity of the aromatic rings, which are mitigated due to flexible rings but may also present elements that restrict conformation. Most compounds that exhibit dual inhibitory activity had relatively long chains, in addition to a flat and rigid portion suggestive of affinity for Topo I and a flexible region characteristic of selective drugs for Topo II. Besides, it is noticed that most compounds that exhibit dual inhibitory showed similarities in the types of interactions and amino acids when compared to the selective compounds of Topo I and II. For instance, selective Topoisomerase I inhibitors interact with Arginine364 residues, and selective Topoisomerase II inhibitors interact with Arginine487 residues, as both residues are targets for dual compounds.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/química , Proliferação de Células , DNA Topoisomerases Tipo II/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Neoplasias/tratamento farmacológico , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/uso terapêutico , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/metabolismo
2.
Molecules ; 26(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201422

RESUMO

A possible inhibitor of proteases, which contains an indole core and an aromatic polar acetylene, was designed and synthesized. This indole derivative has a molecular architecture kindred to biologically relevant species and was obtained through five synthetic steps with an overall yield of 37% from the 2,2'-(phenylazanediyl)di(ethan-1-ol). The indole derivative was evaluated through docking assays using the main protease (SARS-CoV-2-Mpro) as a molecular target, which plays a key role in the replication process of this virus. Additionally, the indole derivative was evaluated as an inhibitor of the enzyme kallikrein 5 (KLK5), which is a serine protease that can be considered as an anticancer drug target.


Assuntos
Acetileno/química , Antivirais/química , Antivirais/síntese química , Indóis/química , Inibidores de Proteases/química , Inibidores de Proteases/síntese química , SARS-CoV-2/enzimologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Descoberta de Drogas , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Calicreínas/antagonistas & inibidores , Modelos Moleculares , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA