Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34833740

RESUMO

Sudden Cardiac Death (SCD) is an unexpected sudden death due to a loss of heart function and represents more than 50% of the deaths from cardiovascular diseases. Since cardiovascular problems change the features in the electrical signal of the heart, if significant changes are found with respect to a reference signal (healthy), then it is possible to indicate in advance a possible SCD occurrence. This work proposes SCD identification using Electrocardiogram (ECG) signals and a sparse representation technique. Moreover, the use of fixed feature ranking is avoided by considering a dictionary as a flexible set of features where each sparse representation could be seen as a dynamic feature extraction process. In this way, the involved features may differ within the dictionary's margin of similarity, which is better-suited to the large number of variations that an ECG signal contains. The experiments were carried out using the ECG signals from the MIT/BIH-SCDH and the MIT/BIH-NSR databases. The results show that it is possible to achieve a detection 30 min before the SCD event occurs, reaching an an accuracy of 95.3% under the common scheme, and 80.5% under the proposed multi-class scheme, thus being suitable for detecting a SCD episode in advance.


Assuntos
Eletrocardiografia , Processamento de Sinais Assistido por Computador , Bases de Dados Factuais , Morte Súbita Cardíaca , Coração , Humanos
2.
Sensors (Basel) ; 20(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164373

RESUMO

Magnetic Resonance (MR) Imaging is a diagnostic technique that produces noisy images, which must be filtered before processing to prevent diagnostic errors. However, filtering the noise while keeping fine details is a difficult task. This paper presents a method, based on sparse representations and singular value decomposition (SVD), for non-locally denoising MR images. The proposed method prevents blurring, artifacts, and residual noise. Our method is composed of three stages. The first stage divides the image into sub-volumes, to obtain its sparse representation, by using the KSVD algorithm. Then, the global influence of the dictionary atoms is computed to upgrade the dictionary and obtain a better reconstruction of the sub-volumes. In the second stage, based on the sparse representation, the noise-free sub-volume is estimated using a non-local approach and SVD. The noise-free voxel is reconstructed by aggregating the overlapped voxels according to the rarity of the sub-volumes it belongs, which is computed from the global influence of the atoms. The third stage repeats the process using a different sub-volume size for producing a new filtered image, which is averaged with the previously filtered images. The results provided show that our method outperforms several state-of-the-art methods in both simulated and real data.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Algoritmos , Artefatos , Encéfalo/diagnóstico por imagem , Simulação por Computador , Humanos , Modelos Estatísticos , Imagens de Fantasmas , Razão Sinal-Ruído , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA