Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 22(7): 800-811, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35639110

RESUMO

Samples of α-glycine (α-GLY; 230-350 nm) were irradiated in laboratory as a function of electron beam energies (0.25, 0.50, and 1.00 keV) at room temperature (293-295 K). The evolution of α-glycine irradiation process was monitored in real time by infrared spectroscopy (Fourier transform infrared - FTIR), through specific spectral bands: 2610, 2124, 1410, and 1333 cm-1. A phenomenological model is proposed to describe the column density decay when thick organic samples are processed by ionizing beams. The α-glycine radiolysis has exhibited transient and stationary modes in such thickness films. The first stage is mainly described by one exponential decay, whereas the latter foremost decays linearly; compaction processes have been neglected; glycine dissociation and sputtering processes are assumed to be responsible for the damage caused by the electron beam impact through the solid film. The second (stationary) stage is due to equilibrium between a partially shielded bulk radiolysis and sputtering of protective layers. The decay rates are measured for the transient and stationary modes and allow determining the processing velocity of the samples as a function of the electron beam energy. Finally, the model is applied to space weathering to find out the typical sputtering rate of organic compounds on the surface of astrophysical analogs with no protection layers attacked by solar wind (SW) electrons at ≈1 AU. Although the velocity of processing materials in SW has natural competing effects, such as regolith overturn by impacts of micro- and macrometeorites and downslope motion of material that is unstable due to changes in the geopotential of the airless bodies (e.g., asteroid 101955 Bennu), these competing processes are not included in the simulations presented here.


Assuntos
Elétrons , Tempo (Meteorologia) , Glicina , Espectrofotometria Infravermelho
2.
Am J Bot ; 106(11): 1519-1525, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31664731

RESUMO

PREMISE: The El Niño Southern Oscillation (ENSO) affects tropical environmental conditions, potentially altering ecosystem function as El Niño events interact with longer-term climate change. Anomalously warm equatorial Pacific Ocean temperatures affect rainfall and temperature throughout the tropics and coincide with altered leaf flush phenology and increased fruit production in wet tropical forests; however, the understanding of mechanisms underlying this pattern is limited. There is evidence that increases in tropical tree reproduction anticipate El Niño onset, motivating the continued search for a global driver of tropical angiosperm reproduction. We present the solar-wind energy flux hypothesis: that physical energy influx to the Earth's upper atmosphere and magnetosphere, generated by a positive anomaly in the solar wind preceding El Niño development, cues tropical trees to increase resource allocation to reproduction. METHODS: We test this hypothesis using 19 years of data from Luquillo, Puerto Rico, correlating them with measures of solar-wind energy. RESULTS: From 1994 to 2013, the solar-wind energy flux into Earth's magnetosphere (Ein ) was more strongly correlated with the number of species fruiting and flowering than the Niño 3.4 climate index, despite Niño 3.4 being previously identified as a driver of interannual increases in reproduction. CONCLUSIONS: Changes in the global magnetosphere and thermosphere conditions from increased solar-wind energy affect global atmospheric pressure and circulation patterns, principally by weakening the Walker circulation. We discuss the idea that these changes cue interannual increases in tropical tree reproduction and act through an unidentified mechanism that anticipates and synchronizes the reproductive output of the tropical trees with El Niño.


Assuntos
Árvores , Vento , Ecossistema , Porto Rico , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA