Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37110863

RESUMO

Iron ore is a fundamental pillar in construction globally, however, its process is highly polluting and deposits are becoming less concentrated, making reusing or reprocessing its sources a sustainable solution to the current industry. A rheological analysis was performed to understand the effect of sodium metasilicate on the flow curves of concentrated pulps. The study was carried out in an Anton Paar MCR 102 rheometer, showing that, in a wide range of dosages, the reagent can reduce the yield stress of the slurries, which would result in lower energy costs for transporting the pulps by pumping. To understand the behavior observed experimentally, computational simulation has been used by means of quantum calculations to represent the metasilicate molecule and the molecular dynamics to study the adsorption of metasilicate on the hematite surface. It has been possible to obtain that the adsorption is stable on the surface of hematite, where increasing the concentration of metasilicate increases its adsorption on the surface. The adsorption could be modeled by the Slips model where there is a delay in adsorption at low concentrations and then a saturated value is reached. It was found that metasilicate requires the presence of sodium ions to be adsorbed on the surface by means of a cation bridge-type interaction. It is also possible to identify that it is absorbed by means of hydrogen bridges, but to a lesser extent than the cation bridge. Finally, it is observed that the presence of metasilicate adsorbed on the surface modifies the net surface charge, increasing it and, thus, generating the effect of dispersion of hematite particles which experimentally is observed as a decrease in rheology.

2.
Materials (Basel) ; 11(4)2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29597254

RESUMO

Silica nanoparticles are widely studied in emerging areas of nanomedicine because they are biocompatible, and their surface can be modified to provide functionalization. The size is intrinsically related to the performance of the silica nanoparticles; therefore, it is important to have control over the size. However, the silica nanoparticles obtained from sodium metasilicate are less studied than those obtained from tetraethyl orthosilicate. Moreover, the methods of surface modification involve several steps after the synthesis. In this work, the effect of different concentrations of sodium metasilicate on the size of silica nanoparticles was studied. In the same way, we studied the synthesis of organically modified silica nanoparticles in a one-step method, using poly(ethylene glycol). The nanoparticles were characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. It was found that the size distribution of the silica nanoparticles could be modified by changing the initial concentration of sodium metasilicate. The one-step surface-modification method caused a significant decrease in size distribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA