Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884100

RESUMO

The employment of smart meters for energy consumption monitoring is essential for planning and management of power generation systems. In this context, forecasting energy consumption is a valuable asset for decision making, since it can improve the predictability of forthcoming demand to energy providers. In this work, we propose a data-driven ensemble that combines five single well-known models in the forecasting literature: a statistical linear autoregressive model and four artificial neural networks: (radial basis function, multilayer perceptron, extreme learning machines, and echo state networks). The proposed ensemble employs extreme learning machines as the combination model due to its simplicity, learning speed, and greater ability of generalization in comparison to other artificial neural networks. The experiments were conducted on real consumption data collected from a smart meter in a one-step-ahead forecasting scenario. The results using five different performance metrics demonstrate that our solution outperforms other statistical, machine learning, and ensembles models proposed in the literature.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Previsões , Modelos Lineares , Modelos Estatísticos
2.
Sensors (Basel) ; 21(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34770285

RESUMO

Recently, the operation of distribution systems does not depend on the state or utility based on centralized procedures, but rather the decentralization of the decisions of the distribution companies whose objectives are the efficiency of interconnectivity. Therefore, distribution companies are exposed to greater risks, and due to this, the need to make decisions based on increasingly reliable models has grown up considerably. Therefore, we present a survey of key aspects, technologies, protocols, and case studies of the current and future trend of Smart Grids. This work proposes a taxonomy of a large number of technologies in Smart Grids and their applications in scenarios of Smart Networks, Neural Networks, Blockchain, Industrial Internet of Things, or Software-Defined Networks. Therefore, this work summarizes the main features of 94 research articles ranging the last four years. We classify these survey, according Smart Grid Network Topologies, because it can group as the main axis the sensors applied to Smart Grids, as it shows us the interconnection forms generalization of the Smart Networks with respect to the sensors found in a home or industry.


Assuntos
Blockchain , Sistemas Computacionais , Indústrias , Tecnologia
3.
Sensors (Basel) ; 21(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34770515

RESUMO

This work is focused on the performance analysis and optimal routing of wireless technology for intelligent energy metering, considering the inclusion of micro grids. For the study, a geo-referenced scenario has been taken into account, which will form the structure of a graph to be solved using heuristic-based algorithms. In the first instance, the candidate site of the world geography to perform the case study is established, followed by deploying infrastructure devices and determining variables and parameters. Then, the model configuration is programmed, taking into account that a set of nodes and vertices is established for proper routing, resulting in a preliminary wireless network topology. Finally, from a set of restrictions, a determination of users connected to the concentrator and optimal routing is performed. This procedure is treated as a coverage set problem. Consequently, to establish the network parameters, two restrictions are specifically considered, capacity and range; thus, can be determined the best technology to adapt to the location. Finally, a verification of the resulting network topologies and the performance of the infrastructure is done by simulating the wireless network. With the model created, scenarios are tested, and it is verified that the optimization model demonstrates its effectiveness.


Assuntos
Redes de Comunicação de Computadores , Tecnologia sem Fio , Algoritmos , Eletricidade
4.
Sensors (Basel) ; 21(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34300432

RESUMO

Citizens are expected to require the growth of multiple Internet of Things (IoT) -based applications to improve public and private services. According to their concept, smart cities seek to improve the efficiency, reliability, and resilience of these services. Consequently, this paper searches for a new vision for resolving problems related to the quick deployment of a wireless sensor network (WSN) by using a sizing model and considering the capacity and coverage of the concentrators. Additionally, three different routing models of these technology resources are presented as alternatives for each WSN deployment to ensure connectivity between smart meters and hubs required for smart metering. On the other hand, these solutions must reduce costs when this type of wireless communication network is deployed. The present work proposes various optimization models that consider the physical and network layers in order to integrate different wireless communication technologies, thus reducing costs in terms of the minimum number of data aggregation points. Using a heterogeneous wireless network can reduce resource costs and energy consumption in comparison to a single cellular technology, as proposed in previous works. This work proposes a sizing model and three different models for routing wireless networks. In each case, constraints are evaluated and can be associated with different real-world scenarios. This document provides an optimization model that encompasses all of the proposed constraints; due to the combinatorial nature of the problem, this would require a heuristic technique.

5.
Sensors (Basel) ; 18(8)2018 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-30126233

RESUMO

The unpredictable increase in electrical demand affects the quality of the energy throughout the network. A solution to the problem is the increase of distributed generation units, which burn fossil fuels. While this is an immediate solution to the problem, the ecosystem is affected by the emission of CO2. A promising solution is the integration of Distributed Renewable Energy Sources (DRES) with the conventional electrical system, thus introducing the concept of Smart Microgrids (SMG). These SMGs require a safe, reliable and technically planned two-way communication system. This paper presents a heuristic based on planning capable of providing a bidirectional communication that is near optimal. The model follows the structure of a hybrid Fiber-Wireless (FiWi) network with the purpose of obtaining information of electrical parameters that help us to manage the use of energy by integrating conventional electrical system with SMG. The optimization model is based on clustering techniques, through the construction of balanced conglomerates. The method is used for the development of the clusters along with the Nearest-Neighbor Spanning Tree algorithm (N-NST). Additionally, the Optimal Delay Balancing (ODB) model will be used to minimize the end to end delay of each grouping. In addition, the heuristic observes real design parameters such as: capacity and coverage. Using the Dijkstra algorithm, the routes are built following the shortest path. Therefore, this paper presents a heuristic able to plan the deployment of Smart Meters (SMs) through a tree-like hierarchical topology for the integration of SMG at the lowest cost.

6.
Sensors (Basel) ; 18(5)2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29695099

RESUMO

At present, the standardisation of electrical equipment communications is on the rise. In particular, manufacturers are releasing equipment for the smart grid endowed with communication protocols such as DNP3, IEC 61850, and MODBUS. However, there are legacy equipment operating in the electricity distribution network that cannot communicate using any of these protocols. Thus, we propose an infrastructure to allow the integration of legacy electrical equipment to smart grids by using wireless sensor networks (WSNs). In this infrastructure, each legacy electrical device is connected to a sensor node, and the sink node runs a middleware that enables the integration of this device into a smart grid based on suitable communication protocols. This middleware performs tasks such as the translation of messages between the power substation control centre (PSCC) and electrical equipment in the smart grid. Moreover, the infrastructure satisfies certain requirements for communication between the electrical equipment and the PSCC, such as enhanced security, short response time, and automatic configuration. The paper’s contributions include a solution that enables electrical companies to integrate their legacy equipment into smart-grid networks relying on any of the above mentioned communication protocols. This integration will reduce the costs related to the modernisation of power substations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA