Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 16: 803387, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368282

RESUMO

Sleep spindles are thought to promote memory consolidation. Recently, we have shown that visuomotor adaptation (VMA) learning increases the density of spindles and promotes the coupling between spindles and slow oscillations, locally, with the level of spindle-SO synchrony predicting overnight memory retention. Yet, growing evidence suggests that the rhythmicity in spindle occurrence may also influence the stabilization of declarative and procedural memories. Here, we examined if VMA learning promotes the temporal organization of sleep spindles into trains. We found that VMA increased the proportion of spindles and spindle-SO couplings in trains. In agreement with our previous work, this modulation was observed over the contralateral hemisphere to the trained hand, and predicted overnight memory retention. Interestingly, spindles grouped in a cluster showed greater amplitude and duration than isolated spindles. The fact that these features increased as a function of train length, provides evidence supporting a biological advantage of this temporal arrangement. Our work opens the possibility that the periodicity of NREM oscillations may be relevant in the stabilization of procedural memories.

2.
Cereb Cortex ; 32(12): 2493-2507, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34649283

RESUMO

Recent studies from us and others suggest that traditionally declarative structures mediate some aspects of the encoding and consolidation of procedural memories. This evidence points to the existence of converging physiological pathways across memory systems. Here, we examined whether the coupling between slow oscillations (SO) and spindles, a mechanism well established in the consolidation of declarative memories, is relevant for the stabilization of human motor memories. To this aim, we conducted an electroencephalography study in which we quantified various parameters of these oscillations during a night of sleep that took place immediately after learning a visuomotor adaptation (VMA) task. We found that VMA increased the overall density of fast (≥12 Hz), but not slow (<12 Hz), spindles during nonrapid eye movement sleep, stage 3 (NREM3). This modulation occurred rather locally over the hemisphere contralateral to the trained hand. Although adaptation learning did not affect the density of SOs, it substantially enhanced the number of fast spindles locked to the active phase of SOs. The fact that only coupled spindles predicted overnight memory retention points to the relevance of this association in motor memory consolidation. Our work provides evidence in favor of a common mechanism at the basis of the stabilization of declarative and motor memories.


Assuntos
Consolidação da Memória , Eletroencefalografia , Humanos , Memória/fisiologia , Consolidação da Memória/fisiologia , Polissonografia , Sono/fisiologia
3.
J Neurosci ; 36(19): 5338-52, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27170130

RESUMO

UNLABELLED: During slow-wave sleep and deep anesthesia, the rat hippocampus displays a slow oscillation (SO) that follows "up-and-down" state transitions in the neocortex. There has been recent debate as to whether this local field potential (LFP) rhythm reflects internal processing or entrains with respiratory inputs. To solve this issue, here we have concomitantly recorded respiration along with hippocampal, neocortical, and olfactory bulb (OB) LFPs in rats anesthetized with urethane. During the course of anesthesia, LFPs transitioned between activity states characterized by the emergence of different oscillations. By jointly analyzing multisite LFPs and respiratory cycles, we could distinguish three types of low-frequency hippocampal oscillations: (1) SO, which coupled to neocortical up-and-down transitions; (2) theta, which phase-reversed across hippocampal layers and was largest at the fissure; and (3) a low-frequency rhythm with largest amplitude in the dentate gyrus, which coupled to respiration-entrained oscillations in OB and to respiration itself. In contrast, neither theta nor SO coupled to respiration. The hippocampal respiration-coupled rhythm and SO had frequency <1.5 Hz, whereas theta tended to be faster (>3 Hz). Tracheotomy abolished hippocampal respiration-coupled rhythm, which was restored by rhythmic delivery of air puffs into the nasal cavity. These results solve the apparent contradictions among previous studies by demonstrating that the rat hippocampus produces multiple types of low-frequency oscillations. Because they synchronize with different brain circuits, however, we postulate that each activity pattern plays a unique role in information processing. SIGNIFICANCE STATEMENT: The rat hippocampus exhibits a large-amplitude slow oscillation (<1.5 Hz) during deep sleep and anesthesia. It is currently debated whether this rhythm reflects internal processing with the neocortex or entrainment by external inputs from rhythmic nasal respiration, which has similar frequency. Here we reconcile previous studies by showing that the hippocampus can actually produce two low-frequency rhythms at nearby frequencies: one that indeed couples to respiration and another that is coupled to the neocortex. We further show that the respiration-coupled rhythm differs from theta oscillations. The results support a role for brain oscillations in connecting distant brain regions, and posit the respiratory cycle as an important reference for neuronal communication between olfactory and memory networks.


Assuntos
Hipocampo/fisiologia , Respiração , Ritmo Teta , Animais , Potenciais Evocados , Masculino , Neocórtex/fisiologia , Bulbo Olfatório/fisiologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA