Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Sports Act Living ; 4: 1011240, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685057

RESUMO

Purpose: To investigate the effects of hydrolyzed whey protein enriched with glutamine dipeptide on the percentage of oxygen consumption, second ventilatory threshold, duration and total distance covered, and skeletal muscle damage during an exhaustion test in elite triathletes. Methods: The study was a randomized, double-blinded, placebo-controlled, crossover trial. Nine male triathletes performed a progressive incremental test on a treadmill ergometer (1.4 km h-1·3 min-1) 30 min after ingesting either 50 g of maltodextrin plus four tablets of 700 mg hydrolyzed whey protein enriched with 175 mg of glutamine dipeptide diluted in 250 ml of water (MGln) or four tablets of 700 mg maltodextrin plus 50 g maltodextrin diluted in 250 ml of water (M). Each athlete was submitted to the two dietary treatments and two corresponding exhaustive physical tests with an interval of one week between the interventions. The effects of the two treatments were then compared within the same athlete. Maximal oxygen consumption, percentage of maximal oxygen consumption, second ventilatory threshold, and duration and total distance covered were measured during the exhaustion test. Blood was collected before and immediately after the test for the determination of plasma lactate dehydrogenase (LDH) and creatine kinase (CK) activities and lactate concentration (also measured 6, 10, and 15 min after the test). Plasma cytokines (IL-6, IL-1ß, TNF-α, IL-8, IL-10, and IL-1ra) and C-reactive protein levels were also measured. Results: A single dose of MGln increased the percentage of maximal oxygen consumption, second ventilatory threshold duration, and total distance covered during the exhaustion test and augmented plasma lactate levels 6 and 15 min after the test. MGln also decreased plasma LDH and CK activities indicating muscle damage protection. Plasma cytokine and C-reactive protein levels did not change across the study periods. Conclusion: Conditions including overnight fasting and a single dose of MGln supplementation resulted in exercising at a higher percentage of maximal oxygen consumption, a higher second ventilatory threshold, blood lactate levels, and reductions in plasma markers of muscle damage during an exhaustion test in elite triathletes. These findings support oral glutamine supplementation's efficacy in triathletes, but further studies require.

2.
Cytokine ; 149: 155746, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34678553

RESUMO

Exploring the relationship between exercise inflammation and the peripheral neuroendocrine system is essential for understanding how acute or repetitive bouts of exercise can contribute to skeletal muscle adaption. In severe damage, some evidence demonstrates that peripheral neuroendocrine receptors might contribute to inflammatory resolution, supporting the muscle healing process through myogenesis. In this sense, the current study aimed to evaluate two classic peripheral neuronal receptors along with skeletal muscle inflammation and adaptation parameters in triceps brachii after exercise. We euthanized C57BL (10 to 12 weeks old) male mice before, and one, two, and three days after a downhill running protocol. The positive Ly6C cells, along with interleukin-6 (IL-6), nuclear factor kappa B (NF-κB), glucocorticoid receptor (GR), α7 subunits of the nicotinic acetylcholine receptor (nAChRs), and myonuclei accretion were analyzed. Our main results demonstrated that nAChRs increased with the inflammatory and myonuclei accretion responses regardless of NF-κB and GR protein expression. These results indicate that increased nAChR may contribute to skeletal muscle adaption after downhill running in mice.


Assuntos
Inflamação/fisiopatologia , Sistemas Neurossecretores/fisiopatologia , Condicionamento Físico Animal/fisiologia , Corrida/fisiologia , Animais , Inflamação/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , NF-kappa B/metabolismo , Sistemas Neurossecretores/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores Nicotínicos/metabolismo
3.
Am J Physiol Regul Integr Comp Physiol ; 322(1): R41-R54, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34786967

RESUMO

Macrophages are one of the top players when considering immune cells involved with tissue homeostasis. Recently, increasing evidence has demonstrated that macrophages could also present two major subsets during tissue healing: proliferative macrophages (M1-like), which are responsible for increasing myogenic cell proliferation, and restorative macrophages (M2-like), which are involved in the end of the mature muscle myogenesis. The participation and characterization of these macrophage subsets are critical during myogenesis to understand the inflammatory role of macrophages during muscle recovery and to create supportive strategies that can improve mass muscle maintenance. Indeed, most of our knowledge about macrophage subsets comes from skeletal muscle damage protocols, and we still do not know how these subsets can contribute to skeletal muscle adaptation. Thus, this narrative review aims to collect and discuss studies demonstrating the involvement of different macrophage subsets during the skeletal muscle damage/regeneration process, showcasing an essential role of these macrophage subsets during muscle adaptation induced by acute and chronic exercise programs.


Assuntos
Proliferação de Células , Exercício Físico , Hipertrofia/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Músculo Esquelético/metabolismo , Regeneração , Aumento do Músculo Esquelético , Animais , Humanos , Hipertrofia/imunologia , Hipertrofia/patologia , Hipertrofia/fisiopatologia , Inflamação/imunologia , Inflamação/patologia , Inflamação/fisiopatologia , Macrófagos/imunologia , Músculo Esquelético/imunologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Fenótipo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA