Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38256965

RESUMO

Hydrothermal aging is a matter of considerable concern for natural fiber-reinforced polymers; it can alter dimensional stability and induce microcracks and macro strain on the composite structure. This study applied a sorption kinetic model and examined the effects of water on the damping factor of sisal mat-reinforced polyester composites. The experimental data were fitted well using a Boltzmann sigmoid function, suggesting a promising first step toward kinetic water sorption modeling. Additionally, a damping test was carried out using the impulse excitation technique, highlighting the composite material's dynamic response under varying water absorption conditions. The result showed that damping exhibited sensitivity to water absorption, increasing significantly during the first 24 h of immersion in water, then remained steady over time, inferring a critical time interval. An empirical model proved satisfactory with the correlation coefficient for sorption rates and damping of sisal mat polymeric composites.

2.
Polymers (Basel) ; 15(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37836012

RESUMO

As a part of the mission to create materials that are more environmentally friendly, we present the following proposal, in which a study of the mechanical properties of composite materials comprising a polyester resin with sisal fiber and bentonite particles was conducted. Sisal fiber was added to a matrix in percentages ranging from 5% to 45% in relation to the polyester resin weight, while bentonite remained fixed at 7% in relation to the polyester resin weight. The specimens were manufactured by compression molding. The mechanical properties were analyzed by tensile, bending, impact, stepped creep, and relaxation tests. In addition, energy-dispersive X-ray spectroscopy and scanning electron microscopy analyses were carried out to analyze the composition and heterogeneity of the structure of the composite material. The results obtained showed that 7% of bentonite added to the matrix affects the tensile strength. Flexural strength increased by up to 21% in the specimens with a 20% addition of sisal fiber, while the elastic modulus increased by up to 43% in the case of a 20% addition of sisal fiber. The viscoelastic behavior was improved, while the relaxation stress was affected.

3.
Polymers (Basel) ; 14(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080641

RESUMO

Composites based on virgin and recycled polypropylene (PP and rPP) reinforced with 15 wt% sisal fibers, with and without alkali treatment, were prepared by compression molding in a mat composed of a three-layer sandwich structure. The sisal was characterized by Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The composites were characterized according to physical and mechanical properties. Additionally, a factorial experimental design was used to statistically evaluate the mechanical properties of the composite. The FTIR and XRD indicated the partial removal of amorphous materials from the surface of the sisal after alkali treatment. The composites' density results varied from 0.892 to 0.927 g·cm-3, which was in the desirable range for producing lightweight automotive components. A slight decrease in the hardness of the pure rPP and rPP composites in relation to the PP was observed. The water absorption was higher in rPP composites, regardless of the chemical treatment. Moreover, the impact resistance of PP and its composites was higher than the values for rPP. Statistical analysis showed that the alkali treatment was a significant factor for the hardness of the rPP and PP composites, and that the addition of the sisal layer was relevant to improve the impact resistance of the composites.

4.
Molecules ; 26(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809812

RESUMO

An on-line preconcentration system for the simultaneous determination of Copper (Cu) and manganese (Mn) in water samples was developed and coupled to a microwave-induced plasma optical emission spectrometer (MIP OES). The flow injection system was designed with a minicolumn packed with sisal fiber (Agave sisalana). A multivariate experimental design was performed to evaluate the influence of pH, preconcentration time, and eluent concentration. Optimal conditions for sample preparation were pH 5.5, preconcentration time was 90 s, and HCl 0.5 mol L-1 was the eluent. The main figures of merit were detection limits 3.7 and 9.0 µg L-1 for Cu and Mn, respectively. Precision was expressed as a relative standard deviation better than 10%. Accuracy was evaluated via spiked recovery assays with recoveries between 75-125%. The enrichment factor was 30 for both analytes. These results were adequate for water samples analysis for monitoring purposes. The preconcentration system was coupled and synchronized with the MIP OES nebulizer to allow simultaneous determination of Cu and Mn as a novel sample introduction strategy. The sampling rate was 20 samples/h. Sisal fiber resulted an economical biosorbent for trace element preconcentration without extra derivatization steps and with an awfully time of use without replacement complying with the principles of green analytical methods.


Assuntos
Cobre/química , Química Verde/métodos , Manganês/química , Água/química , Concentração de Íons de Hidrogênio , Indicadores e Reagentes/química , Micro-Ondas , Plasma/química , Oligoelementos/química
5.
Talanta ; 225: 121910, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33592695

RESUMO

As a natural adsorbent, sisal (agave sisalana) fibers were used to extract Cu, Ni, Mn, and Zn from diesel oil samples for posterior determination (i.e., direct analytical measurements on the solid support) of the analytes by energy dispersive X-ray fluorescence spectrometry (EDXRF). In the proposed procedure, 0.2 g of sisal fiber was directly added to 5.0 mL of diesel oil contained in a glass tube. After 5 min of contact time, the mixture was filtered, and the collected fibers were oven-dried for 30 min at 70 °C. After drying, the analytes were quantified directly by EDXRF using the sisal fibers as a solid support. The calibration curves showed linear concentration ranges of 0.09-1.00, 0.12-1.00, 0.09-1.00, 0.06-1.0 µg g-1 for Cu, Ni, Mn, and Zn, respectively. The limits of detection (LOD) for Cu, Ni, Mn, and Zn were 0.03, 0.04, 0.03, and 0.02 µg g-1, respectively. The repeatability, evaluated by performing ten measurements at a concentration of 0.50 µg g-1 for each metal, with the results expressed in terms of the relative standard deviation (RSD), was 3.2, 6.5, 6.8, and 6.1% for Cu, Ni, Mn, and Zn, respectively. The results obtained by the proposed method were compared with the results obtained by a comparative method using inductively coupled plasma optical emission spectrometry, and both results showed good agreement. The proposed method was applied for Ni, Cu, Mn, and Zn determination in diesel oil samples collected from different gas stations.

6.
Materials (Basel) ; 13(10)2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429451

RESUMO

Space trusses are structural systems, generally made of tubes, used worldwide because of their advantages in covering long-span roofs. In addition to having a low cost, the truss weight is relatively reduced. The load capacity of these structures depends also on the strength of their node connection. Connections made with the superposition of flattened tube ends trespassed by one bolt are, generally, known as typical nodes. They are inexpensive but present eccentricities that reduce significantly the strength of such space trusses. To increase the truss load capacity, this research presents the results of an experimental program to reduce the eccentricities of the typical nodes. This reduction is done with a new type of spacer made of encapsulated concrete with steel fiber or sisal fiber. The experimental tests showed that the trusses with typical nodes collapsed under reduced load by local failure due to high distortions at the nodes. The trusses with encapsulated concrete spacer showed good results, with an increase in collapse load of 36% and failure by buckling bars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA