Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 195: 115544, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37717494

RESUMO

The objective of this work was to discover a biochemical pathway to explain the transfer of cadmium, a toxic element, from seawater to cultured mussels. Understanding the intricacies of this transfer is crucial for global mussel crops, as it has the potential to mitigate risks to human health and prevent economic losses in the industry. We focused our investigation on Yal Bay, a typical area with intense mussel aquaculture activity (16,000 t y-1) in the inland sea of southern Chile. Seasonal samples of blue mussels (Mytilus chilensis) were collected and analyzed from September 2014 to December 2015 at two integrated depths (0-5 m and 5-10 m). Diurnal and nocturnal seston, seawater, benthic sediments and decanted suspensions from the water column were recorded. Our findings indicate that nocturnal seston satisfactorily explains the presence of cadmium in Mytilus chilensis aquaculture throughout its annual temporal distribution (Spearman rs = 0.63, p = 0.002).


Assuntos
Mytilus edulis , Mytilus , Animais , Humanos , Mytilus/metabolismo , Cádmio/metabolismo , Aquicultura , Água do Mar
2.
PeerJ ; 11: e15848, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37609442

RESUMO

The present study aimed to evaluate and compare feeding responses of the non-native and native bivalves, the dark false mussel Mytilopsis leucophaeata and the scorched mussel Brachidontes darwinianus, respectively, by offering different concentrations of seston from the coastal lagoon where these species coexist after dark false mussel introduction (Rodrigo de Freitas Lagoon, Rio de Janeiro-Brazil). For this purpose, independent laboratory experiments were carried out under five concentrations of seston to test the differences in clearance and ingestion rates of bivalves as a function of increasing concentrations of suspended particulate matter (SPM) on seston. In addition, from the integrated analysis of data obtained in experiments, it can be inferred about the efficiency levels of these species to remove SPM from seston and their effects on water turbidity and nutrient concentrations (total carbon, nitrogen, and phosphorus). Our hypothesis was that the non-native bivalve is more efficient to clear and ingest SPM from seston compared to the native one, which may lead to competitive advantages to the successful invasion of M. leucophaeata in coastal lagoons. Native species did not show a significant difference in clearance and ingestion rates with increasing concentrations of seston. Whereas the non-native bivalve showed a slight tendency to increase its clearance and ingestion rates with the increase in seston concentrations, evidencing its plasticity to adjust its feeding responses. The native bivalve was significantly more efficient to clear and ingest SPM at the lower seston concentration (i.e., close to natural concentrations found in the lagoon) compared to the non-native bivalve, which, on the other hand, showed a significant increase in its ingestion rates at the higher concentration tested (140 mg SPM L-1). Thus, the present results did not suggest food competition between the non-native M. leucophaeata and the native B. darwinianus in the introduced system. However, M. leucophaeata increased its feeding response with experimental increment in seston concentration, which suggests species ability to benefit from conditions of increased inputs of organic matter and higher primary production that could mediate its establishment in introduced systems.


Assuntos
Mytilidae , Alimentos Marinhos , Animais , Brasil , Carbono , Cinética , Material Particulado
3.
Oecologia ; 190(3): 547-557, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31227905

RESUMO

Nutritional stress, from feeding on low-quality diets or starvation, may cause changes in consumers' nitrogen isotope ratios (δ15N = 15N/14N) and trophic fractionation (∆15N = δ15Nconsumer - δ15Nfood source), however, research has shown mixed results in the magnitude and the direction of the change. This is potentially more complex for omnivores whose diets span a wide range of food resources. We conducted seasonal field samplings in Patagonian lakes and analyzed the relationship between seston (SES) quality parameters and the δ15N and ∆15N of an omnivorous copepod, Boeckella gracilipes (Bg). We also performed a 7-day laboratory starvation experiment, an extreme form of nutritional stress, to investigate if lack of food led to changes in δ15NBg values. Our field results showed that increasing values of the seston carbon to nitrogen ratio (C:NSES), chlorophyll a (Chl a), and δ15NSES were related to higher δ15NBg values. C:NSES and Chl a were also positively related to ∆15N; yet, C:NSES alone explained 70% of the variation. C:NSES values correlated with the presence of mixotrophic algae and ciliates that are key food resources for B. gracilipes. In our laboratory starvation experiment, the δ15NBg values increased significantly, pointing to use of internal N sources; yet, the change associated with starvation was less pronounced than that related to C:NSES changes in the field, suggesting depletion of the substrate pool in the former. We found that ∆15N values of omnivorous species consuming a low-quality diet would be higher than that from a conspecific with a high-quality diet; though fasting animals would show intermediate values.


Assuntos
Copépodes , Animais , Isótopos de Carbono , Clorofila A , Dieta , Cadeia Alimentar , Isótopos de Nitrogênio
4.
J Fish Biol ; 90(4): 1356-1387, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28138987

RESUMO

Temporal changes in larval fish species composition and abundance compared with other components of the seston are described in four estuarine habitats in the Atrato Delta, Colombia. In comparison with zooplankton, fish larvae and egg density and anthropogenic debris abundance were low in the South Atrato Delta. Transparency, water temperature and chlorophyll a were the major factors influencing the spatiotemporal distribution of ichthyoplankton in the delta. The most abundant fish larvae were Astyanax sp. 1, Anchovia clupeoides, Cetengraulis edentulus, Anchoa sp., Bathygbius curacao, Dormitator maculatus, Hyporhamphus sp., Atherinella blackburni, Gobiosoma sp. 1 and Menticirrhus americanus (92·8% of total abundance). Spatial temporal analysis shows that in this delta, shrub (arracachal) and grass (eneal) habitats are important for freshwater and estuarine species, whilst mudflat and mangrove are important for estuarine species and estuarine-marine species, since most flexion and post-flexion stages of these species were found there. Anthropogenic debris density never surpassed the total ichthyoplankton density, but was ubiquitous. Shrub and mangrove habitats had higher densities of anthropogenic debris, since these are flood-stem habitats that trap solids.


Assuntos
Ecossistema , Peixes/fisiologia , Rios/química , Estações do Ano , Poluentes da Água , Zooplâncton/classificação , Animais , Região do Caribe , Peixes/classificação , Larva/classificação , Larva/fisiologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA