RESUMO
BACKGROUND: The invasive gastropod Pomacea canaliculata has received great attention in the last decades as a result of its negative impact on crops agriculture, yet knowledge of their digestive physiology remains incomplete, particularly the enzymatic breakdown of macromolecules such as proteins and lipids. RESULTS: Discovery proteomics revealed aspartic peptidases, cysteine peptidases, serine peptidases, metallopeptidases and threonine peptidases, as well as acid and neutral lipases and phospholipases along the digestive tract of P. canaliculata. Peptides specific to peptidases (139) and lipases (14) were quantified by targeted mass spectrometry. Digestion begins in the mouth via diverse salivary peptidases (nine serine peptidases; seven cysteine peptidases, one aspartic peptidase and 22 metallopeptidases) and then continues in the oesophagus (crop) via three luminal metallopeptidases (Family M12) and six serine peptidases (Family S1). Downstream, the digestive gland provides a battery of enzymes composed of aspartic peptidase (one), cysteine peptidases (nine), serine peptidases (12) and metallopeptidases (24), including aminopeptidases, carboxypeptidases and dipeptidases). The coiled gut has M1 metallopeptidases that complete the digestion of small peptides. Lipid extracellular digestion is completed by triglyceride lipases. CONCLUSION: From an integrative physiological and anatomical perspective, P. canaliculata shows an unexpected abundance and diversity of peptidases, which participate mainly in extracellular digestion. Moreover, the previously unknown occurrence of luminal lipases from the digestive gland is reported for the first time. Salivary and digestive glands were the main tissues involved in the synthesis and secretion of these enzymes, but plausibly the few luminally exclusive peptidases are secreted by ventrolateral pouches or epithelial unicellular glands. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Assuntos
Gastrópodes , Animais , Proteômica , Cisteína , Trato Gastrointestinal , Peptídeos , Metaloproteases , Serina Proteases , Serina Endopeptidases , SerinaRESUMO
Candida parapsilosis sensu stricto (C. parapsilosis) has emerged as the second/third commonest Candida species isolated from hospitals worldwide. Candida spp. possess numerous virulence attributes, including peptidases that play multiple roles in both physiological and pathological events. So, fungal peptidases are valid targets for new drugs development. With this premise in mind, we have evaluated the effect of serine peptidase inhibitors (SPIs) on both cell biology and virulence aspects of C. parapsilosis. First, five different SPIs, phenylmethylsulfonyl fluoride, benzamidine, 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride, N-α-tosyl-L-lysine chloromethyl ketone hydrochloride, and N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) were tested, and TPCK showed the best efficacy to arrest fungal growth. Subsequently, the ability of TPCK to modulate physiopathological processes was investigated. Overall, TPCK was able to (i) inhibit the cell-associated serine peptidase activities, (ii) promote morphometric and ultrastructural alterations, (iii) induce an increase in the intracellular oxidation level, which culminates in a vigorous lipid peroxidation and accumulation of neutral lipids in cytoplasmic inclusions, (iv) modulate the expression/exposition of surface structures, such as mannose/glucose-rich glycoconjugates, N-acetylglucosamine-containing molecules, chitin, polypeptides and surface aspartic peptidases, (v) reduce the adhesion to either polystyrene or glass surfaces as well as to partially disarticulate the mature biofilm, (vi) block the fungal interaction with macrophages, and (vii) protect Galleria mellonella from fungal infection, enhancing larvae survivability. Altogether, these results demonstrated that TPCK induced several changes over fungal biology besides the interference with aspects associated to C. parapsilosis virulence and pathogenesis, which indicates that SPIs could be novel promising therapeutic agents in dealing with candidiasis.
Assuntos
Antifúngicos/farmacologia , Candida parapsilosis/efeitos dos fármacos , Candidíase/prevenção & controle , Inibidores de Serina Proteinase/farmacologia , Tosilfenilalanil Clorometil Cetona/farmacologia , Animais , Antifúngicos/administração & dosagem , Candida parapsilosis/citologia , Candida parapsilosis/crescimento & desenvolvimento , Adesão Celular/efeitos dos fármacos , Modelos Animais de Doenças , Larva/microbiologia , Lepidópteros/microbiologia , Estresse Oxidativo , Inibidores de Serina Proteinase/administração & dosagem , Análise de Sobrevida , Tosilfenilalanil Clorometil Cetona/administração & dosagem , Resultado do Tratamento , Virulência/efeitos dos fármacosRESUMO
In Brazil, envenomation by Bothrops pitvipers is responsible for over 73% of snakebites, and their venom is a rich source of proteolytic enzymes. Most studies have demonstrated that Bothrops jararaca venom acts on macromolecular substrates, causing an imbalance in the victim's hemostatic system. In contrast, fewer studies have examined the proteolytic activity on small molecules such as peptides. In this study, we used a set of bioactive peptides (insulin B chain, Met-enkephalin, Leu-enkephalin, neuropeptide Y, peptide YY, pancreatic polypeptide, substance P and somatostatin) to identify new peptide substrates for the metallopeptidases and serine peptidases from the B. jararaca venom. The majority of these peptides were substrates for the venom, but neuropeptide Y and pancreatic polypeptide presented higher hydrolyses rates. Although most of the peptides were simultaneously substrates for both classes of proteases, serine peptidases were the most active. Substance P was an exclusive substrate for metallopeptidases, while somatostatin was a selective substrate for serine peptidases. The neutralizing efficacy of the bothropic antivenom produced by the Butantan Institute was also assessed and found to totally prevent substance P hydrolysis, whereas somatostatin cleavage was not inhibited. Thus, the antivenom effectively inhibited metallopeptidase activity, but did not neutralize some of the serine peptidases. These results indicate that, in addition to cleaving proteins, the proteolytic enzymes from this venom also hydrolyze bioactive peptides, and this peptidase activity could effectively contribute to some of the many dire manifestations of envenomation.
Assuntos
Antivenenos/química , Venenos de Crotalídeos/enzimologia , Metaloproteases/química , Peptídeos/química , Serina Endopeptidases/química , Animais , Bothrops , Testes de Neutralização , Especificidade por SubstratoAssuntos
Animais , Ratos , Venenos de Serpentes/toxicidade , Ducto Deferente/fisiologia , Bothrops , Bradicinina , Fosfolipases A2RESUMO
The main compounds of Bothrops jararaca venom are serine peptidases, metallopeptidases and phospholipases A2. These enzymes cause several symptoms, as hemorrhage, coagulation disturbances, edema and myotoxicity. However, effects on smooth muscle are not clear yet. Previous studies in our laboratory have shown that Bothrops jararaca crude venom (CV) provokes contractions of rat vas deferens, followed by relaxation. The aim of this study was to characterize which components of Bothrops jararaca venom are responsible for contraction and if this reaction is neurogenic or myogenic. Vas deferens were isolated and mounted in an appropriated chamber containing continuously aerated nutritive solution at 37°C. Organs were electrically stimulated (5 Hz, 3 ms, 90 V, in trains of 10 s) during 60 minutes. Once established, fractions from 1 up to 6 (100 μg/mL), obtained by gel filtration chromatography (Sephacryl S-100 resin) were added. Before and after samples incubation, vas deferens was stimulated with KCl (80 mM). Using the same protocol, before adding to tissue, fractions were pre-incubated with EDTA (100 µM), a metallopeptidase inhibitor, or PMSF (100 µM), a serine peptidase inhibitor. Hoe 140 (100 nM), B2 receptor antagonist, also was incubated with vas deferens, before venom addition. Fractions 4, 5 and 6 did not cause significant effects on vas deferens, which excluded the phospholipase A2 action. Fraction 1 caused similar effects compared to CV, an increase of neurogenic and myogenic contractions, but did not inhibit any of them. The contractile effect was inhibited by PMSF and Hoe 140, indicating that serine peptidase and bradykinin are responsible by neurogenic and myogenic contraction, probably by bradykinin release by serine peptidases, from the vas deferens. KCl-induced contraction was not altered.(AU)