Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Heliyon ; 10(15): e34781, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39161841

RESUMO

Gasification is a thermochemical process that has gained significant interest in the field of biomass energy conversion. Despite the level of technological maturity of the process, the dynamic variation of the process as a result of changes in both the properties of the gasifying agent and biomass has not been analysed in sufficient depth. Therefore, the present study characterizes the process dynamically as a function of step-type changes in rice husk biomass moisture content and gasifying airflow. To identify stability conditions and the range for inducing disturbances, steady-state tests were carried out using a 32-factorial design. The experimental results demonstrate that within the tested range of airflow, the gasification process operates in the oxygen-limited zone. Despite increasing the airflow from 20 to 40 standard liters per minute (SLPM) and driving the reaction towards the combustion zone, the high temperatures achieved resulted in the gas reaching a peak Lower Heating Value (LHV) of 2.6 MJ/Nm3 and a gas power of 2.6 kW, with a Cold Gas Efficiency (CGE) of 62%. In contrast, the effect of biomass moisture content was negligible due to the thermal inertia of the reactor and the natural variation of the process. Dynamic evaluation revealed that the oxidation temperature and gas concentration were the variables that took the longest to return to stability after air disturbances. It took approximately 1200 s for the hydrogen (H2) concentration to stabilize, while the gas power required about 300 s. No clear results were observed regarding the impact of the dynamic disturbance in moisture content, which varied between 12.3% w.t and 21.5% w.t.

2.
Materials (Basel) ; 17(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38893853

RESUMO

The development of bio-insultation materials has attracted increasing attention in building energy-saving fields. In tropical and hot-humid climates, building envelope insulation is important for an energy efficient and comfortable indoor environment. In this study, several experiments were carried out on a bio-insulation material, which was prepared by using rice husk as a raw material. Square rice husk-based insultation panels were developed, considering the ASTM C-177 dimensions, to perform thermal conductivity coefficient tests. The thermal conductivity coefficient obtained was 0.073 W/(m K), which is in the range of conventional thermal insulators. In a second phase of this study, two experimental enclosures (chambers) were constructed, one with rice husk-based insulation panels and the second one without this insulation. The measures of the temperatures and thermal flows through the chambers were obtained with an electronic module based on the ARDUINO platform. This module consisted of three DS18B20 temperature sensors and four Peltier plates. Daily temperature and heat flux data were collected for the two chambers during the dry season in Panama, specifically between April and May. In the experimental chamber that did not have rice husk panel insulation on the roof, a flow of up to 28.18 W/m2 was observed, while in the chamber that did have rice husk panels, the presence of a flow toward the interior was rarely observed. The rice husk-based insulation panels showed comparable performance with conventional insulators, as a sustainable solution that takes advantage of a local resource to improve thermal comfort and the reduction of the environmental impact.

3.
J Microbiol Methods ; 223: 106976, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38925440

RESUMO

Pellet production represents a critical step for several processes requiring fungal biomass, nevertheless, its optimization is seldom reported. The use of finely ground rice husk as a microcarrier and co-substrate permitted a marked increase (≈ 2.7×) in the productivity of fungal pellet production using Trametes versicolor compared to traditional production methods. The pellets show similar structure and smaller size compared to typical sole-mycelium pellets, as well as comparable laccase activity. The efficiency of the pellets for biodegradation was confirmed by the removal of the crystal violet dye, achieving significantly faster decolorization rates compared to the traditionally produced pellets. The use of these pellets during the continuous treatment of the dye in a stirred tank bioreactor resulted in 97% decolorization operating at a hydraulic residence time of 4.5 d.


Assuntos
Biodegradação Ambiental , Reatores Biológicos , Corantes , Oryza , Oryza/microbiologia , Corantes/metabolismo , Corantes/química , Reatores Biológicos/microbiologia , Lacase/metabolismo , Biomassa , Violeta Genciana/metabolismo , Violeta Genciana/química , Trametes/metabolismo , Trametes/enzimologia , Micélio/metabolismo , Polyporaceae/metabolismo
4.
Sci Rep ; 14(1): 10391, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710729

RESUMO

Colombia has great potential to produce clean energy through the use of residual biomass from the agricultural sector, such as residues obtained from the life cycle of rice production. This document presents a mixed approach methodology study to examine the combustion of rice husks as a possible energy alternative in the Tolima department of Colombia. First, the physicochemical characteristics of the rice husk were analyzed to characterize the raw material. Next, System Advisor Model (SAM) software was used to model a bioenergy plant to obtain biochar, bio-oil, and biogas from the combustion of rice husks and generate performance matrices, such as thermal efficiency, heat rate, and capacity factor. Then, the project was evaluated for financial feasibility using a mathematical model of net present value (NPV) with a planning horizon of 5 years. Finally, a subset of the local population was surveyed to assess perspectives on the project in the region. The results of the rice husk physicochemical analysis were the following: nitrogen content (0.74%), organic carbon (38.04%), silica (18.39%), humidity determination (7.68%), ash (19.4%), presence of carbonates (< 0.01%), and pH (6.41). These properties are adequate for the combustion process. The SAM simulation showed that the heat transferred in the boiler was 3180 kW, maintaining an efficiency between 50 and 52% throughout the 12 months of the year, meaning that the rice husk can generate electricity and thermal energy. The financial analysis showed that the internal rate of return (IRR) was 6% higher than the opportunity interest rate (OIR), demonstrating economic feasibility of the project. The design and creation of a rice husk processing plant is socially and environmentally viable and has the potential to contribute to the economic development of the Tolima community and reduce greenhouse gases. Likewise, this activity has the potential to promote energy security for consumers and environmental sustainability while at the same time being economically competitive.


Assuntos
Oryza , Oryza/química , Colômbia , Biocombustíveis/análise , Biomassa , Agricultura/métodos , Carvão Vegetal/química
5.
Polymers (Basel) ; 16(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611155

RESUMO

In the current contribution, bacterial nanocellulose obtained from a by-product of Kombucha tea production and vegetal nanocellulose isolated from milled rice husks were employed as fillers of PLA-based composites prepared by intensive mixing followed by compression molding. Given the challenges associated with the incorporation of nanocelluloses-initially obtained as aqueous suspensions-into melt compounding processes, and also with achieving a proper dispersion of the hydrophilic nanofillers within PLA, three different nanofibrils incorporation strategies were studied: i.e., direct mixing of dried milled nanocelluloses and PLA; masterbatching by solvent casting of native nanocelluloses followed by melt compounding; and masterbatching by solvent casting of acetylated nanocelluloses followed by melt compounding. Composites with varying filler content (from 0.5 wt.% to 7 wt.%) were characterized in terms of morphology, optical properties, and mechanical performance. Results revealed the relative suitability of each strategy employed to promote nanocelluloses dispersion within the PLA matrix. PLA/nanocellulose masterbatches prepared by solvent casting proved to be particularly useful for feeding the nanocelluloses into the processing equipment in a dry state with limited hornification. Acetylation also contributed to a better dispersion of both nanocelluloses within the PLA matrix, although no clear positive impact on the mechanical properties of the films was observed. Finally, filler loading played an important role in the films' properties by increasing their stiffness while reducing their translucency.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38319422

RESUMO

Lignocellulosic biomass conversion applying thermochemical routes has been postulated as an alternative for generating renewable energy. This research compares energy-driven biorefineries based on two thermochemical routes addressed to upgrade rice husk and rice straw produced in the Department of Sucre-Colombia. Initially, this research analyzes the physico-chemical and structural characterization of the rice residues. Four different scenarios were proposed to compare the energy-driven biorefineries based on fast pyrolysis and gasification considering technical, economic, and environmental metrics. These biorefineries were simulated using the Aspen Plus V.14.0 software. The novelty of this research is focused on the identification of the biorefinery with the best techno-economic, energetic, and environmental performance in the Colombian context. Economic and environmental analyses were done by using economic metrics and emissions. From an economic perspective, the stand-alone gasification process did not have a positive economic margin. In contrast, the fast pyrolysis process has the best economic performance since this process has a positive profit margin. Indeed, scenario 1 (fast pyrolysis of both rice residues) presented an economic margin of 13.75% and emissions of 2170.92 kgCO2eq/kg for 10 years. However, this scenario was not energetically the best, holding second place due to the feedstock requirements, compared to gasification. The biorefinery scenario 1 has the best performance.

7.
Polymers (Basel) ; 16(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257043

RESUMO

Additive manufacturing has garnered significant attention as a versatile method for fabricating green and complex composite materials. This study delves into the fabrication of polymer composites by employing polylactic acid (PLA) in conjunction with rice husk as a reinforcing filler. The filaments were made by an extruded filament maker and then were used to make tensile and impact samples by another extrusion technology, fused deposition modeling (FDM). The structural and morphological characteristics of the composite materials were analyzed using scanning electron microscopy SEM. Results show that both the filament and samples are very reliable in producing polymer parts with this rice husk solid waste. This research contributes to increasing materials' circularity and potentially creating a local social economy around rice production, where this waste is not much used.

8.
Biotechnol Lett ; 46(1): 85-95, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064041

RESUMO

The objective of this study was to obtain sufficient information on the thermal stabilization of a food-grade lipase from Thermomyces lanuginosus (TLL) using the immobilization technique. To do this, a new non-porous support was prepared via the sequential extraction of SiO2 from rice husks, followed by functionalization with (3-aminopropyl) triethoxysilane - 3-APTES (Amino-SiO2), and activation with glutaraldehyde - GA (GA-Amino-SiO2). We evaluated the influence of GA concentration, which varied from 0.25% v v-1 to 4% v v-1, on the immobilization parameters and enzyme thermal stabilization. The thermal inactivation parameters for both biocatalyst forms (soluble or immobilized TLL) were calculated by fitting a non-first-order enzyme inactivation kinetic model to the experimental data. According to the results, TLL was fully immobilized on the external support surface activated with different GA concentrations using an initial protein load of 5 mg g-1. A sharp decrease of hydrolytic activity was observed from 216.6 ± 12.4 U g-1 to 28.6 ± 0.9 U g-1 of after increasing the GA concentration from 0.25% v v-1 to 4.0% v v-1. The support that was prepared using a GA concentration at 0.5% v v-1 provided the highest stabilization of TLL - 31.6-times more stable than its soluble form at 60 °C. The estimations of the thermodynamic parameters, e.g., inactivation energy (Ed), enthalpy (ΔH#), entropy (ΔS#), and the Gibbs energy (ΔG#) values, confirmed the enzyme stabilization on the external support surface at temperatures ranging from 50 to 65 °C. These results show promising applications for this new heterogeneous biocatalyst in industrial processes given the high catalytic activity and thermal stability.


Assuntos
Lipase , Oryza , Propilaminas , Silanos , Lipase/metabolismo , Dióxido de Silício , Glutaral , Enzimas Imobilizadas/metabolismo , Termodinâmica , Estabilidade Enzimática
9.
Environ Sci Pollut Res Int ; 30(59): 123616-123632, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37991611

RESUMO

Pristine pyrogenic carbonaceous material (BRH) obtained from rice husk and modified with FeCl3 (BRH-FeCl3) were prepared and explored as carbocatalysts for the activation of peroxymonosulfate (PMS) to degrade a model pharmaceutical (acetaminophen, ACE) in water. The BRH-FeCl3/PMS system removed the pharmaceutical faster than the BRH/PMS. This is explained because in BRH-FeCl3, compared to BRH, the modification (iron played a role as a structuring agent mainly) increased the average pore diameter and the presence of functional groups such as -COO-, -Si-O-, or oxygen vacancies, which allowed to remove the pollutant through an adsorption process and significant carbocatalytic degradation. BRH-FeCl3 was reusable during four cycles and had a higher efficiency for activating PMS than another inorganic peroxide (peroxydisulfate, PDS). The effects of BRH-FeCl3 and PMS concentrations were evaluated and optimized through an experimental design, maximizing the ACE degradation. In the optimized system, a non-radical pathway (i.e., the action of singlet oxygen, from the interaction of PMS with defects and/or -COO-/-Si-O- moieties on the BRH-FeCl3) was found. The BRH-FeCl3/PMS system generated only one primary degradation product that was more susceptible to biodegradation and less active against living organisms than ACE. Also, the BRH-FeCl3/PMS system induced partial removals of chemical oxygen demand and dissolved organic carbon. Furthermore, the carbocatalytic system eliminated ACE in a wide pH range and in simulated urine, having a low-moderate electric energy consumption, indicating the feasibility of the carbocatalytic process to treat water polluted with pharmaceuticals.


Assuntos
Oryza , Água , Peróxidos/química , Preparações Farmacêuticas
10.
Artigo em Inglês | MEDLINE | ID: mdl-37884710

RESUMO

Grain cultivation and its impacts on the environment have been the focus of many studies, especially due to generated solid waste and the wide use of agrochemicals aiming for greater productivity. In this context, the present study proposes a new and consistent step in constructing self-sustainability in rice farming. The proposed stage includes reusing green silica waste as an adsorbent to treat effluents contaminated by pesticides directly applied to rice cultivation. After nano silica production through the rice husks burning, followed by basic leaching and acid precipitation, a carbonaceous material remains. This material, naturally impregnated by Na2SiO3, was washed and dried, characterized, and used to remove the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D). The adsorption essays were performed at 2,4-D at low concentrations (between 1 and 10 mg L-1) at different temperatures. The washed and dried porous carbon (WDPC) surface is irregular and presents slit-shaped channels. The FT-IR analysis identified the siloxane, carbonyl, carboxylate, and methylene functional groups available to interact with the pesticide molecules. The washing/drying process eliminated impurities, improving the surface area from 539.67 to 619.67 cm2 g-1 and pore volume from 0.29 to 0.44 cm3 g-1. Concerning the adsorption of 2,4-D on WDPC, the best pH was 6.0, where around 75% of the pesticide was removed from the water. The equilibrium isotherms presented an S-shaped form indicating a multilayer and cooperative adsorption, with maximum adsorption capacities of 7.504 and 7.736 mg g-1. The estimated ∆Gads, ΔHads, and ΔSads values suggested that pesticide adsorption was spontaneous, exothermic, and favorable. Finally, WDPC demonstrated a good potential to uptake 2,4-D from water, contributing to self-sustainability in rice farming.

11.
Materials (Basel) ; 16(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37297038

RESUMO

The search for new sources of high-quality non-crystalline silica as a construction material for high-performance concrete has attracted the interest of researchers for several decades. Numerous investigations have shown that highly reactive silica can be produced from rice husk, an agricultural waste that is abundantly available in the world. Among others, the production of rice husk ash (RHA) by chemical washing with hydrochloric acid prior to the controlled combustion process has been reported to provide higher reactivity because such a process removes alkali metal impurities from RHA and provides an amorphous structure with higher surface area. This paper presents an experimental work in which a highly reactive rice husk ash (TRHA) is prepared and evaluated as a replacement for Portland cement in high-performance concretes. The performance of RHA and TRHA was compared with that of conventional silica fume (SF). Experimental results showed that the increase in compressive strength of concrete with TRHA was clearly observed at all ages, generally higher than 20% of the strength obtained with the control concrete. The increase in flexural strength was even more significant, showing that concrete with RHA, TRHA and SF increased by 20%, 46%, and 36%, respectively. Some synergistic effect was observed when polyethylene-polypropylene fiber was used for concrete with TRHA and SF. The chloride ion penetration results also indicated that the use of TRHA had similar performance compared to that of SF. Based on the results of statistical analysis, the performance of TRHA is found to be identical to that of SF. The use of TRHA should be further promoted considering the economic and environmental impact that will be achieved by utilizing agricultural waste.

12.
Environ Sci Pollut Res Int ; 30(26): 68477-68488, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37126169

RESUMO

This work presents the synthesis of SiO2/Nb2O5 and SiO2/ZnS heterostructures using the microwave-assisted hydrothermal (MAH) method, which is fast and has low temperature. The silica used in the synthesis was obtained by burning the rice husk without any pre- or post-treatments. The obtained samples were characterized using various techniques such as X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and UV-visible. The obtained silica was found to be amorphous, and the materials used for modification showed characteristic of the type of synthesis used. SEM images showed that Nb2O5 and ZnS interacted with the SiO2 surface, filling the voids. In the photocatalytic process, the heterostructures showed enhanced decolorization efficiency for dyes such as rhodamine B (RhB) and methylene blue (MB) compared to SiO2. For RhB, the silica decolorized approximately 24%, and for MB, it discolored approximately 27%; SiO2/Nb2O5 showed 91.24% decolorization efficiency for RhB and 72.77% MB, while SiO2/ZnS showed approximately 96% for RhB and 100% for MB. All samples were tested under the same conditions. This demonstrates that the use of rice husk residue not only improves the photocatalytic activity of heterostructures but also promotes the utilization of improperly discarded residues.


Assuntos
Oryza , Dióxido de Silício , Dióxido de Silício/química , Nióbio/química , Compostos de Zinco
13.
Heliyon ; 9(2): e13567, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36865471

RESUMO

After replacing asbestos with other types of fibers used as reinforcement of cementitious matrices, it has been found that rice husk, an agro-industrial waste with high silica content, can be used to improve the properties of fibercement. In this work, the effect of adding different forms of silica (rice husk, rice husk ash, and silica microparticles) on fibercement's physicochemical and mechanical properties was investigated. Rice husk ash and silica microparticles were extracted from the rice husk incineration and acid leaching process. The chemical composition of silica was determined by X-Ray Fluorescence, and the ash leached with hydrochloric acid was found to contain more than 98% silica. Cement, fiberglass, additives, and different forms of silica were used to manufacture fibercement specimens in their different forms. Concentrations of 0%, 3%, 5%, and 7% were taken for each form of silica, and four replicates were performed. The setting time was 28 days, during which absorption, density, and humidity tests were performed. Experiments were statistically analyzed at a 95% confidence value, and it was determined that there are significant differences in the compressive resistance, density, and absorption in relation to the type of additive and the interaction between the type of additive and its percentage of addition, but not whit percentage of addition. It was found that the fibercement specimens with 3% of rice husk present a modulus of elasticity of 9.4% higher than de control sample. The use of rice husk as an additive in fibercement composites seems to be interesting because these agro-industrial wastes are inexpensive and easily available everywhere to utilize in the cement industry and also helpful in reducing environmental pollution due to their cost and the positive effect on their properties.

14.
Materials (Basel) ; 16(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36984308

RESUMO

Industrial effluents and wastewater treatment have been a mainstay of environmental preservation and remediation for the last decade. Silica nanoparticles (SiO2) obtained from rice husk (RH) are an alternative to producing low-cost adsorbent and agriculture waste recovery. One adsorption challenge is facilitating the adsorbate separation and reuse cycle from aqueous medium. Thus, the present work employs SiO2 supported on polylactic acid (PLA) nanofibers obtained by the electrospinning method for Rhodamine B (RhB) dye adsorption. The silica surface was modified with trimethylsilyl chloride (TMCS) to increase affinity towards organic compounds. As a result, the silanized surface of the silica from rice husk (RHSil) promoted an increase in dye adsorption attributed to the hydrophobic properties. The PLA fibers containing 40% SiO2 (w w-1) showed about 85-95% capacity adsorption. The pseudo-first-order kinetic model was demonstrated to be the best model for PLA:SiO2 RHSil nanocomposites, exhibiting a 1.2956 mg g-1 adsorption capacity and 0.01404 min-1 kinetic constant (k1) value. In the reuse assay, PLA:SiO2 membranes preserved their adsorption activity after three consecutive adsorption cycles, with a value superior to 60%. Therefore, PLA:SiO2 nanocomposites from agricultural waste are an alternative to "low-cost/low-end" treatments and can be used in traditional treatment systems to improve dye removal from contaminated waters.

15.
Chemosphere ; 327: 138457, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36948257

RESUMO

The development of new materials that have a high capacity to remove pollutants in water-based media is becoming increasingly important because of the serious contamination of water and the negative impact on biodiversity and public health. The presence of glyphosate in water, the most widely used herbicide worldwide, has triggered alerts owing to the collateral effects it may cause on human health. The main objective of the present study was to investigate the potential of the hybrid material MIL-53(Al)@RH for the adsorption of glyphosate in aqueous solution. The material was obtained following the methodology of MIL-53(Al) synthesis in the presence of hydrolyzed rice husk assisted by microwave. Batch adsorption experiments were carried out to evaluate the adsorbent dosage, pH0 solution effect, contact time, adsorbate concentration, and temperature effect. The results demonstrated that a maximum adsorption capacity of 296.95 mg g-1, at pH0 4 with a ratio of 0.04 g MIL-53(Al)@RH/50 mL of solution, was achieved in 30 min. The Avrami and pseudo-second order models appropriately described the adsorption kinetics and the equilibrium by Langmuir and Sips models. The enthalpy changes (ΔH°) determined propose an endothermic reaction governed by chemisorption, corroborating the kinetic and equilibrium settings. Hydrogen bonds, π*-π interactions, and complexation between the metal centers of MIL-53(Al) and the anionic groups of glyphosate were postulated to be involved as adsorption mechanisms. Finally, for practical application, MIL-53(Al)@RH was packed in a column for a fixed-bed test which revealed that the hybrid can remove glyphosate with an adsorption capacity of 76.304 mg L-1, utilizing 90% of the bed.


Assuntos
Oryza , Poluentes Químicos da Água , Purificação da Água , Humanos , Água , Poluentes Químicos da Água/química , Oryza/química , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Purificação da Água/métodos , Glifosato
16.
Environ Sci Pollut Res Int ; 30(14): 42176-42191, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36645596

RESUMO

Rice husk ash (RHA) is an excellent pozzolana and associated with hydrated lime (HL), it becomes an alternative binder to Portland cement in soil stabilization. In the context of waste valorization, waste foundry sand (WFS) and carbide lime (CL) have been investigated in civil construction and environmental geotechnical applications. However, stabilizing WFS with alternative binders to Portland cement represents a large field of research to be explored. This study evaluated the stabilization of WFS with a binder based on RHA and CL, compared to the use of RHA-HL. An experimental design was carried out to evaluate the influence of different dry-specific weights (12.00, 12.75, and 13.50 kN/m3), RHA contents (10%, 20%, and 30%), and curing times (28, 60, and 90 days) under unconfined compressive strength (UCS). UCS results were submitted to statistical analysis and correlated to the porosity/binder content index (η/Biv). Healing capacity, mineralogy, microstructure, and leaching of metals from mixtures of interest were evaluated. The results showed that higher specific weights and higher percentages of RHA promoted better strength. The η/Biv0.28 index proved to be an adequate parameter to assess the UCS of WFS-RHA mixtures with different limes (CL and HL), lower porosity, and higher binder content leading to higher strengths. The mixture's mineralogy and microscopy showed the formation of cementing gels, corroborating the strength gains. WFS stabilized with both binders (RHA-CL and RHA-HL) presented satisfactory environmental performance, allowing the immobilization of metals in the waste compositions.


Assuntos
Oryza , Metais , Oryza/química , Óxidos , Areia
17.
Biotechnol Appl Biochem ; 70(1): 184-192, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35338782

RESUMO

The enormous amount of agroindustrial residues generated in Brazil can be used as biomass to produce fermentable sugars. This study compared the pretreatments with different proportions of dilute acid. The method involved pretreatment with 0.5%, 1%, and 1.5% (v/v) sulfuric acid, followed by hydrolysis using the halotolerant and thermostable endoglucanase from Botrytis ricini URM 5627. The physicochemical characterization of plant biomass was performed using XRD, FTIR, and SEM. The pretreatment significantly increased the production of fermentable sugars following enzymatic saccharification from wheat bran, sugarcane bagasse, and rice husk: 153.67%, 91.98%, and 253.21% increment in sugar production; 36.39 mg⋅g-1 ± 1.23, 39.55 mg⋅g-1 ± 1.70, and 42.53 mg⋅g-1 ± 7.61 mg⋅L-1 of glucose; and 3.26 ± 0.35 mg⋅g-1 , 3.61mg⋅g-1 ± 0.74 and 3.59 mg⋅g-1 ± 0.80 of fructose were produced, respectively. In conclusion, biomass should preferably be pretreated before the enzymatic saccharification using B. ricini URM 5627 endoglucanase.


Assuntos
Celulase , Saccharum , Celulose/metabolismo , Celulase/metabolismo , Fermentação , Saccharum/metabolismo , Glucose , Hidrólise
18.
Appl Biochem Biotechnol ; 194(12): 6270-6286, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35907063

RESUMO

This work presents the immobilization in situ of commercial lipase from Candida antarctica B (CALB) by the sol-gel technique (xerogel) using silica from rice husk ash (RHA) as a source of silicon. It was used the Ionic Liquid (IL) 1-octyl-3-methylimidazolium bromide (C8MI.Br) as additive. The immobilized derivatives were characterized per SEM, XRD, and per method BET. The enzymatic activity of xerogels was evaluated with different tests, these being the reactional thermal analysis, immobilization yield, and operational and storage stability. The XDR showed that the obtained xerogels have halos in the region between 15 and 35° (2θ) what characterizes it as amorphous materials. The SEM analysis of xerogel shows irregular particles with dimensions less than 20 µm. The immobilized presented an esterification activity (EA) with 263.2 and 213.8 U/g, with and without IL, respectively, higher than the free enzyme (169.6 U/g). The immobilized, with and without IL, presented a significant improvement in the activity performance in relation to free enzyme for the three reactional temperatures (40, 60, and 80 °C) evaluated. The operational stability demonstrated that is possible to use xerogel without ionic liquid for 17 recycles and 21 recycles in IL presence. This methodology allows the preparation of new highly active and selective enzyme catalysts using the rice husk ash as a source of silicon, and the ionic liquid [C8MI]Br as additive. Furthermore, the new materials can provide greater viability in the processes, ensuring longer catalyst life.


Assuntos
Líquidos Iônicos , Oryza , Lipase/metabolismo , Enzimas Imobilizadas/metabolismo , Oryza/metabolismo , Silício , Proteínas Fúngicas/metabolismo , Estabilidade Enzimática
19.
Environ Sci Pollut Res Int ; 29(44): 66547-66561, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35503153

RESUMO

The adsorption of ceftriaxone (CET) and doxycycline (DOX) from aqueous solution using ferrihydrite/plant-based composites (silica rice husk) to reduce their negative impact on the ecosystem was adequately studied. On the other hand, phosphate and humic acid are often found in water and soil; in view of this, their effects on the adsorption of CET and DOX were investigated. The results showed that the removal of ceftriaxone decreased with an increase in pH, while that of doxycycline did not. Ferrihydrite with 10% silica rice husk (Fh-10%SRH) has the highest maximum adsorption capacity of 139 and 178 mg g-1 for CET and DOX, respectively, at room temperature based on Liu's adsorption isotherm. This implies that the presence of silica rice husk increases CET and DOX uptake due to an increase in the pore volume of FH-10%SRH. The results showed that phosphate had a significant inhibition role on CET adsorption and minor on DOX, whereas humic acid salt affected neither case. Increase in temperature up to 333 K favored the adsorption of both contaminants. The proposed adsorption mechanisms of ceftriaxone are electrostatic interaction, n-π interaction, and hydrogen bond, while that of DOX entails n-π interaction and hydrogen bond.


Assuntos
Oryza , Poluentes Químicos da Água , Adsorção , Ceftriaxona/farmacologia , Doxiciclina/farmacologia , Ecossistema , Compostos Férricos , Substâncias Húmicas , Concentração de Íons de Hidrogênio , Cinética , Oryza/química , Fosfatos/farmacologia , Plantas , Dióxido de Silício/farmacologia , Soluções , Água/química , Poluentes Químicos da Água/análise
20.
J Hazard Mater ; 427: 127885, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34872781

RESUMO

A green approach to produce a cellulose-derived biocatalyst containing hydroxamic acids targeted for the neutralization of toxic organophosphates is shown. The cellulose source, rice husk, is among the largest agricultural waste worldwide and can be strategically functionalized, broadening its sustainable application. Herein, rice husk was oxidized in different degrees, leading to carboxylic acid-based colloidal and solid samples. These were functionalized with hydroxamic acids via amide bonds and fully characterized. The hydroxamic acid derived biocatalysts were evaluated in the cleavage of toxic organophosphates, including the pesticide Paraoxon. Catalytic increments reached up to 107-fold compared to non-catalyzed reactions. Most impressively, the materials showed P atom-selectivity and recyclability features. This guarantees only one reaction pathway that leads to less toxic products, hereby, detoxifies. Overall, highly sustainable catalysts are presented, that benefits from waste source, its green functionalization and is successfully employed for the promotion of chemical security of threatening organophosphates. To the best of our knowledge, this is the first report of a hydroxamate-derived rice husk (selectively modified at the C6 of cellulose) and its application in organophosphates reaction.


Assuntos
Oryza , Praguicidas , Agricultura , Catálise , Celulose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA