Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1871(8): 119816, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39159686

RESUMO

Exposure to the non-protein amino acid cyanotoxin ß-N-methylamino-L-alanine (BMAA), released by cyanobacteria found in many water reservoirs has been associated with neurodegenerative diseases. We previously demonstrated that BMAA induced cell death in both retina photoreceptors (PHRs) and amacrine neurons by triggering different molecular pathways, as activation of NMDA receptors and formation of carbamate-adducts was only observed in amacrine cell death. We established that activation of Retinoid X Receptors (RXR) protects retinal cells, including retina pigment epithelial (RPE) cells from oxidative stress-induced apoptosis. We now investigated the mechanisms underlying BMAA toxicity in these cells and those involved in RXR protection. BMAA addition to rat retinal neurons during early development in vitro increased reactive oxygen species (ROS) generation and polyADP ribose polymers (PAR) formation, while pre-treatment with serine (Ser) before BMAA addition decreased PHR death. Notably, RXR activation with the HX630 agonist prevented BMAA-induced death in both neuronal types, reducing ROS generation, preserving mitochondrial potential, and decreasing TUNEL-positive cells and PAR formation. This suggests that BMAA promoted PHR death by substituting Ser in polypeptide chains and by inducing polyADP ribose polymerase activation. BMAA induced cell death in ARPE-19 cells, a human epithelial cell line; RXR activation prevented this death, decreasing ROS generation and caspase 3/7 activity. These findings suggest that RXR activation prevents BMAA harmful effects on retinal neurons and RPE cells, supporting this activation as a broad-spectrum strategy for treating retina degenerations.


Assuntos
Diamino Aminoácidos , Toxinas de Cianobactérias , Espécies Reativas de Oxigênio , Epitélio Pigmentado da Retina , Receptores X de Retinoides , Diamino Aminoácidos/farmacologia , Animais , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptores X de Retinoides/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/citologia , Neurônios Retinianos/metabolismo , Neurônios Retinianos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Humanos , Morte Celular/efeitos dos fármacos
2.
J Neurochem ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37984072

RESUMO

Treatment with bexarotene, a selective retinoid X receptor (RXR) agonist, significantly improves behavioral dysfunctions in various neurodegenerative animal models. Additionally, it activates neurodevelopmental and plasticity pathways in the brains of adult mice. Our objective was to investigate the impact of RXR activation by bexarotene on adult neural stem cells (aNSC) and their cell lineages. To achieve this, we treated NSCs isolated from the subventricular zone (SVZ) of adult rat brains from the proliferative stage to the differentiated status. The results showed that bexarotene-treated aNSC exhibited increased BrdU incorporation, SOX2+ dividing cell pairs, and cell migration from neurospheres, revealing that the treatment promotes self-renewing proliferation and cell motility in SVZ-aNCS. Furthermore, bexarotene induced a cell fate shift characterized by a significant increase in GFAP+/S100B+ differentiated astrocytes, which uncovers the participation of activated-RXR in astrogenesis. In the neuronal lineage, the fate shift was counteracted by bexarotene-induced enhancement of NeuN+ nuclei together with neurite network outgrowth, indicating that the RXR agonist stimulates SVZ-aNCS neuronal differentiation at later stages. These findings establish new connections between RXR activation, astro- and neurogenesis in the adult brain, and contribute to the development of therapeutic strategies targeting nuclear receptors for neural repair.

3.
J. coloproctol. (Rio J., Impr.) ; 43(2): 139-151, Apr.-June 2023. ilus
Artigo em Inglês | LILACS | ID: biblio-1514434

RESUMO

Pseudomyxoma peritonei (PMP) refers to a growth disorder characterized by glycoprotein neoplasm in the peritoneum, where mucin oversecretion occurs. The tumors of the appendix region are well associated with PMP; however, ovarian, colon, stomach, pancreas, and urachus tumors have also been linked to PMP. Other mucinous tumors in the pelvis, paracolic gutters, greater omentum, retrohepatic space, and Treitz ligament can be the reason for PMP. Despite being rare and having a slow growth rate, PMP can be lethal without treatment. It is treated with neoadjuvant chemotherapy with the option of cytoreductive surgery and intraperitoneal chemotherapy. In the current study, we hypothesize that there may be novel gentle ways to inhibit or eliminate the mucin. Dr. David Morris has used mucolytics - such as bromelain and N-acetyl cysteine to solubilize mucin. In the present review, we aimed to study the regulation of mucin expression by promoter methylation, and drugs that can inhibit mucin, such as boldine, amiloride, naltrexone, dexamethasone, and retinoid acid receptors antagonist. This review also explored some possible pathways, such as inhibition of Na + , Ca2+ channels and induction of DNA methyltransferase along with inhibition of ten-eleven translocation enzymes, which can be good targets to control mucin. Mucins are strong adhesive molecules that play great roles in clinging to cells or cell to cell. Besides, they have been greatly involved in metastasis and also act as disease markers for cancers. Diagnostic markers may have exclusive roles in disease initiation and progression. Therefore, the present review explores various drugs to control and target mucin in various diseases, specifically cancers. (AU)


Assuntos
Pseudomixoma Peritoneal/tratamento farmacológico , Aporfinas/uso terapêutico , Retinoides/uso terapêutico , Dexametasona/uso terapêutico , Cálcio , Amilorida/uso terapêutico , Metilação/efeitos dos fármacos , Mucinas/efeitos dos fármacos , Naltrexona/uso terapêutico
4.
Ann Hepatol ; 28(1): 100775, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36280014

RESUMO

INTRODUCTION AND OBJECTIVES: Liver fibrosis is a common pathological change in many chronic liver diseases. Activation of hepatic stellate cells (HSCs) is the core event in liver fibrosis. This study aimed to investigate the role of testicular orphan receptor 4 (TR4) in the activation of HSCs. MATERIALS AND METHODS: In vivo, bile duct ligation (BDL)-induced rat liver fibrosis model was established, and the expressions of TR4 and α-smooth muscle actin (α-SMA) in liver tissues were detected. In vitro, TR4 knockdown and overexpression in JS-1 cells using lentiviral vectors were constructed, and the expressions of TR4, α-SMA, Col-I, and TGF-ß1/smads and retinoid X receptor (RXR) pathway-related genes were detected. RESULTS: TR4 was highly expressed in BDL-induced fibrotic liver, accompanied by increased expression of α-SMA. Knockdown of TR4 significantly inhibited the expressions of α-SMA, Col-I, p-TßRI, and p-Smad2/3, and up-regulated the expression of RXRα in HSCs in vitro. In contrast, TR4 overexpression significantly increased the expressions of α-SMA, Col-I, p-TßRI, and p-Smad2/3, and inhibited the expression of RXRα. CONCLUSIONS: TR4 may promote the activation of HSCs by up-regulating TßR I/Smad2/3 signaling pathway and down-regulating RXRα signaling, thereby promoting the progression of liver fibrosis. Our findings may provide a new therapeutic target against hepatic fibrosis.


Assuntos
Células Estreladas do Fígado , Fator de Crescimento Transformador beta1 , Ratos , Animais , Células Estreladas do Fígado/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Cirrose Hepática/metabolismo , Transdução de Sinais , Fígado/patologia , Receptores de Fatores de Crescimento Transformadores beta/metabolismo
5.
AAPS PharmSciTech ; 23(4): 104, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35381947

RESUMO

Herein, we developed an ethosomal hydrogel based on three types of ethosomes: simple, mixed (surfactant-based micelles and lipid vesicles) or binary (comprising two type of alcohols). Ethanol injection was employed for vesicles preparation, and sodium alginate, as gelling agent. We purposed the local-transdermal administration of the off-the-shelf retinoid fenretinide (FENR) for chemoprevention of breast cancer. Rheograms and flow index values for alginate dispersion (without ethosomes) and hydrogels containing simple, mixed or binary ethosomes suggested pseudoplastic behavior. An increase in the apparent viscosity was observed upon ethosome incorporation. The ethosomal hydrogel displayed increased bioadhesion compared to the alginate dispersion, suggesting that the lipid vesicles contribute to the gelling and bioadhesion processes. In the Hen's Egg Test-Chorioallantoic Membrane model, few spots of lysis and hemorrhage were observed for formulations containing simple (score of 2) and mixed vesicles (score 4), but not for the hydrogel based on the binary system, indicating its lower irritation potential. The binary ethosomal hydrogel provided a slower FENR in vitro release and delivered 2.6-fold less drug into viable skin layers compared to the ethosome dispersion, supporting the ability of the gel matrix to slow down drug release. The ethosomal hydrogel decreased by ~ five-fold the IC50 values of FENR in MCF-7 cells. In conclusion, binary ethosomal gels presented technological advantages, provided sustained drug release and skin penetration, and did not preclude drug cytotoxic effects, supporting their potential applicability as topical chemopreventive systems.


Assuntos
Neoplasias da Mama , Fenretinida , Administração Cutânea , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/prevenção & controle , Galinhas/metabolismo , Sistemas de Liberação de Medicamentos , Feminino , Fenretinida/metabolismo , Fenretinida/farmacologia , Humanos , Hidrogéis/metabolismo , Lipossomos/metabolismo , Pele/metabolismo , Absorção Cutânea
6.
Exp Dermatol ; 31(8): 1202-1207, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35377505

RESUMO

1,25(OH)2 D3 , the active form of vitamin D, has been extensively studied for its putative protective activities against tumors. It does biological work by connecting to a nuclear receptor called VDR, which heterodimerizes itself to another nuclear receptor, RXR. The study observed differences in VDR and RXR expression in non-melanoma skin cancer a actinic keratosis and compared it with normal skin. We performed VDR and RXR immunohistochemistry of 76 controls (normal skin), 49 actinic keratosis, 99 basal cell carcinomas and 96 squamous cell carcinomas from formalin-fixed paraffin-embedded, resulting from surgical procedures. There was a clear pattern in the control group (p < 0.001), with the positivity of both receptors, VDR and RXR. Actinic keratosis differed from the basal cell carcinoma and control groups concerning RXR expression (p < 0.001). SCC was negative for both receptors, differing in all groups (p < 0.001). The site of positivity (nuclear, cytoplasmatic or both) of VDR differed between all groups (p < 0.001). To date, our series is the largest of VDR and RXR immunohistochemistry concerning non-melanoma skin cancer. Our findings reinforce the need to understand the pathways involving VDR and RXR to direct therapies and prevention manoeuvres.


Assuntos
Carcinoma Basocelular , Ceratose Actínica , Neoplasias Cutâneas , Proteínas de Transporte , Humanos , Receptores de Calcitriol/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores X de Retinoides/metabolismo
7.
AAPS PharmSciTech, v. 23, 104, abr. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4292

RESUMO

Herein, we developed an ethosomal hydrogel based on three types of ethosomes: simple, mixed (surfactant-based micelles and lipid vesicles) or binary (comprising two type of alcohols). Ethanol injection was employed for vesicles preparation, and sodium alginate, as gelling agent. We purposed the local-transdermal administration of the off-the-shelf retinoid fenretinide (FENR) for chemoprevention of breast cancer. Rheograms and flow index values for alginate dispersion (without ethosomes) and hydrogels containing simple, mixed or binary ethosomes suggested pseudoplastic behavior. An increase in the apparent viscosity was observed upon ethosome incorporation. The ethosomal hydrogel displayed increased bioadhesion compared to the alginate dispersion, suggesting that the lipid vesicles contribute to the gelling and bioadhesion processes. In the Hen’s Egg Test–Chorioallantoic Membrane model, few spots of lysis and hemorrhage were observed for formulations containing simple (score of 2) and mixed vesicles (score 4), but not for the hydrogel based on the binary system, indicating its lower irritation potential. The binary ethosomal hydrogel provided a slower FENR in vitro release and delivered 2.6-fold less drug into viable skin layers compared to the ethosome dispersion, supporting the ability of the gel matrix to slow down drug release. The ethosomal hydrogel decreased by ~ five-fold the IC50 values of FENR in MCF-7 cells. In conclusion, binary ethosomal gels presented technological advantages, provided sustained drug release and skin penetration, and did not preclude drug cytotoxic effects, supporting their potential applicability as topical chemopreventive systems.

8.
Biochim Biophys Acta Mol Cell Res ; 1868(11): 119098, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34271041

RESUMO

Photoreceptor cell (PHR) death is a hallmark of most retinal neurodegenerative diseases, in which inflammation plays a critical role. Activation of retinoid X receptors (RXR) modulates and integrates multiple cell functions, and has beneficial effects in animal models of chronic inflammatory diseases. Nonetheless, the mechanisms involved and their role in retina neuroprotection are poorly understood. In this work we assessed whether RXR activation prevents inflammation and/or PHR death in retinitis pigmentosa, an inherited retina neurodegeneration, using as an ex vivo model, retinas from the rd1 mice, a murine model of this disease. We demonstrated that rd1 retinas had lower levels of RXR alpha isoform than their wt counterparts at early developmental times, whereas its distribution pattern remained similar. In mixed neuro-glial cultures obtained from either rd1 or wt retinas, both PHR and Müller glial cells (MGC) expressed RXRalpha, and RXR activation by its synthetic pan-agonist PA024 selectively increased mRNA levels of RXRgamma isoform. PA024 decreased PHR death in rd1 mixed cultures; it reduced the amount of non-viable neurons, delayed the onset of PHR apoptosis, and decreased Bax mRNA levels. PA024 also reduced MGC reactivity in vitro before and at the onset of degeneration, decreasing GFAP expression, increasing glutamine synthetase mRNA levels, and promoting the transcription of the anti-inflammatory cytokine, Il-10. These results suggest that RXR activation rescues rd1 PHR and decreases MGC reactivity, promoting an anti-inflammatory environment in the rd1 retina, thus supporting the potential of RXR agonists as pharmacological tools for treating retina degenerative diseases.


Assuntos
Modelos Animais de Doenças , Inflamação/metabolismo , Células Fotorreceptoras/metabolismo , Retinose Pigmentar/metabolismo , Receptores X de Retinoides/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
9.
Neurosci Lett ; 750: 135764, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33621639

RESUMO

Alzheimer's disease (AD) is the main cause of dementia in the world. Studies of human AD brains show abnormalities in the white matter and reduction of myelin and oligodendrocyte markers. It has been proposed that oligodendrocyte progenitor cells (OPCs) present in the adult brain are a potential source for re-myelination, through proliferation and differentiation into mature oligodendrocytes. Bexarotene, a Retinoid X Receptor agonist, has been demonstrated to reverse behavioral deficits and to improved synaptic transmission and plasticity in murine models of AD, which was associated with the reduction of soluble Aß peptides. In the present study, we analyzed changes in the expression of oligodendrocyte lineage markers following oral administration of Bexarotene in a very old (24-month-old) triple transgenic mouse model of AD (3xTg-AD), for which early demyelination changes have been previously described. Bexarotene increased the expression of OPCs and intermediate oligodendrocyte progenitors (Olig2+ and O4+), and increased the number of mitotic (O4+) and myelinating mature (MBP+) oligodendrocytes. We clearly show that Bexarotene promotes re-myelination which might be important for the previously observed cognitive improvement of 3xTg-AD mice treated with this drug.


Assuntos
Doença de Alzheimer/metabolismo , Bexaroteno/farmacologia , Bainha de Mielina/metabolismo , Fármacos Neuroprotetores/farmacologia , Oligodendroglia/efeitos dos fármacos , Receptores X de Retinoides/agonistas , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Proliferação de Células , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oligodendroglia/metabolismo , Oligodendroglia/fisiologia , Presenilina-1/genética , Proteínas tau/genética
10.
Mol Aspects Med ; 78: 100940, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397589

RESUMO

Nuclear receptors are ligand-activated transcription factors that can modulated cellular processes involved in the development, homeostasis, cell proliferation, metabolism, and reproduction through the control of the specific genetic and molecular program. In the central nervous system, they are key regulators of neural stem cell fate decisions and can modulate the physiology of different brain cells. Over the past decades, a large body of evidence has supported that nuclear receptors are potential therapeutic targets for the treatment of neurodegenerative disorders such as Alzheimer's disease, the most common dementia worldwide, and the main cause of disability in later life. This disease is characterized by the progressive accumulation of amyloid-beta peptides and hyperphosphorylated tau protein that can explain alterations in synaptic transmission and plasticity; loss of dendritic spines; increased in reactive microglia and inflammation; reduction of neuronal stem cells number; myelin and vascular alterations that finally leads to increased neuronal death. Here, we present a review of type II no steroidal nuclear receptors that form obligatory heterodimers with the Retinoid X Receptor (RXR) and its potential in the therapeutic of AD. Activation of type II nuclear receptor by synthetic agonist leads to transcriptional regulation of specific genes that acts counteracting against the detrimental effects of amyloid-beta peptides and hyperphosphorylated tau in neuronal cells recovering the functionality of the synapses. But also, activation of type II nuclear receptor leads to modifications in APP metabolism, repression of inflammatory cascade and inductors of the generation of neuronal stem cells and progenitor cells supporting its potential therapeutics role for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Células-Tronco Neurais , Regulação da Expressão Gênica , Humanos , Receptores Citoplasmáticos e Nucleares
11.
Psychopharmacology (Berl) ; 237(7): 2055-2073, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32472163

RESUMO

RATIONALE: The nuclear receptor retinoid X receptor (RXR) belongs to a nuclear receptor superfamily that modulates diverse functions via homodimerization with itself or several other nuclear receptors, including PPARα. While the activation of PPARα by natural or synthetic agonists regulates the sleep-wake cycle, the role of RXR in the sleep modulation is unknown. OBJECTIVES: We investigated the effects of bexarotene (Bexa, a RXR agonist) or UVI 3003 (UVI, a RXR antagonist) on sleep, sleep homeostasis, levels of neurochemical related to sleep modulation, and c-Fos and NeuN expression. METHODS: The sleep-wake cycle and sleep homeostasis were analyzed after application of Bexa or UVI. Moreover, we also evaluated whether Bexa or UVI could induce effects on dopamine, serotonin, norepinephrine epinephrine, adenosine, and acetylcholine contents, collected from either the nucleus accumbens or basal forebrain. In addition, c-Fos and NeuN expression in the hypothalamus was determined after Bexa or UVI treatments. RESULTS: Systemic application of Bexa (1 mM, i.p.) attenuated slow-wave sleep and rapid eye movement sleep. In addition, Bexa increased the levels of dopamine, serotonin, norepinephrine epinephrine, adenosine, and acetylcholine sampled from either the nucleus accumbens or basal forebrain. Moreover, Bexa blocked the sleep rebound period after total sleep deprivation, increased in the hypothalamus the expression of c-Fos, and decreased NeuN activity. Remarkably, UVI 3003 (1 mM, i.p.) induced opposite effects in sleep, sleep homeostasis, neurochemicals levels, and c-Fos and NeuN activity. CONCLUSIONS: The administration of RXR agonist or antagonist significantly impaired the sleep-wake cycle and exerted effects on the levels of neurochemicals related to sleep modulation. Moreover, Bexa or UVI administration significantly affected c-Fos and NeuN expression in the hypothalamus. Our findings highlight the neurobiological role of RXR on sleep modulation.


Assuntos
Bexaroteno/farmacologia , Ácidos Cumáricos/farmacologia , Receptores X de Retinoides/metabolismo , Fases do Sono/efeitos dos fármacos , Fases do Sono/fisiologia , Tetra-Hidronaftalenos/farmacologia , Animais , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Ratos Wistar , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores X de Retinoides/agonistas , Receptores X de Retinoides/antagonistas & inibidores
12.
Curr Drug Targets ; 20(8): 871-878, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30556501

RESUMO

Vitamin A and its derivatives (retinoids) act as potent regulators in many aspects of mammalian reproduction, development, repair, and maintenance of differentiated tissue functioning. Unlike other vitamins, Vitamin A and retinoids, which have hormonal actions, present significant toxicity, which plays roles in clinically relevant situations, such as hypervitaminosis A and retinoic acid ("differentiation") syndrome. Although clinical presentation is conspicuous in states of insufficient or excessive Vitamin A and retinoid concentration, equally relevant effects on host resistance to specific infectious agents, and in the general maintenance of immune homeostasis, may go unnoticed, because their expression requires either pathogen exposure or the presence of inflammatory co-morbidities. There is a vast literature on the roles played by retinoids in the maintenance of a tolerogenic, noninflammatory environment in the gut mucosa, which is considered by many investigators representative of a general role played by retinoids as anti-inflammatory hormones elsewhere. However, in the gut mucosa itself, as well as in the bone marrow and inflammatory sites, context determines whether one observes an anti-inflammatory or proinflammatory action of retinoids. Both interactions between specialized cell populations, and interactions between retinoids and other classes of mediators/regulators, such as cytokines and glucocorticoid hormones, must be considered as important factors contributing to this overall context. We review evidence from recent studies on mucosal immunity, granulocyte biology and respiratory allergy models, highlighting the relevance of these variables as well as their possible contributions to the observed outcomes.


Assuntos
Doenças Transmissíveis/tratamento farmacológico , Retinoides/efeitos adversos , Vitamina A/efeitos adversos , Animais , Doenças Transmissíveis/imunologia , Células Dendríticas/metabolismo , Granulócitos/metabolismo , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Retinoides/uso terapêutico , Linfócitos T Reguladores/metabolismo , Vitamina A/uso terapêutico
13.
Eur J Dermatol ; 28(3): 343-350, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30105991

RESUMO

BACKGROUND: Adapalene has been previously evaluated as a treatment for actinic keratosis (AK) and solar lentigines and shown to improve signs of photoaging. OBJECTIVES: To evaluate whether adapalene 0.3% gel is non-inferior to tretinoin 0.05% cream as treatment for photoaged skin. MATERIALS & METHODS: An investigator-blinded, parallel-group comparison study was conducted in Brazil. Subjects were randomised in a 1:1 ratio to receive, once daily, adapalene 0.3% gel or tretinoin 0.05% cream. Subjects were evaluated at Weeks 1, 4, 8, 12, 16, 20 and 24, based on clinical signs of cutaneous photoaging, histopathological and digital morphometric findings, as well as safety and tolerability. RESULTS: A comparison of clinical efficacy showed that both treatments did not differ significantly regarding clinical evaluation of the following criteria: global cutaneous photoaging, periorbital wrinkles, ephelides/melanosis, forehead wrinkles, and AK. CONCLUSION: Adapalene 0.3% gel showed non-inferior efficacy to tretinoin 0.05% cream as treatment for photoaged skin, with a similar safety profile. Adapalene 0.3% gel may therefore be considered a safe and effective option for the treatment of mild or moderate photoaging.


Assuntos
Adapaleno/administração & dosagem , Fármacos Dermatológicos/administração & dosagem , Envelhecimento da Pele/efeitos dos fármacos , Tretinoína/administração & dosagem , Adapaleno/efeitos adversos , Adulto , Fármacos Dermatológicos/efeitos adversos , Estudos de Equivalência como Asunto , Feminino , Géis , Humanos , Masculino , Pessoa de Meia-Idade , Método Simples-Cego , Envelhecimento da Pele/patologia , Creme para a Pele , Luz Solar/efeitos adversos , Tretinoína/efeitos adversos , Raios Ultravioleta/efeitos adversos
14.
Gene ; 654: 23-35, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29425825

RESUMO

Retinoic acid receptors (RAR) and retinoid X receptors (RXR) are ligand-mediated transcription factors that synchronize intricate signaling networks in metazoans. Dimer formation between these two nuclear receptors mediates the recruitment of co-regulatory complexes coordinating the progression of signaling cascades during developmental and regenerative events. In the present study we identified and characterized the receptors for retinoic acid in the sea cucumber Holothuria glaberrima; a model system capable of regenerative organogenesis during adulthood. Molecular characterizations revealed the presence of three isoforms of RAR and two of RXR as a consequence of alternative splicing events. Various analyses including: primary structure sequencing, phylogenetic analysis, protein domain prediction, and multiple sequence alignment further confirmed their identity. Semiquantitative reverse transcription PCR analysis of each receptor isoform herein identified showed that the retinoid receptors are expressed in all tissues sampled: the mesenteries, respiratory trees, muscles, gonads, and the digestive tract. During regenerative organogenesis two of the receptors (RAR-L and RXR-T) showed differential expression in the posterior segment while RAR-S is differentially expressed in the anterior segment of the intestine. This work presents the first description of the components relaying the signaling for retinoic acid within this model system.


Assuntos
Perfilação da Expressão Gênica , Holothuria/fisiologia , Intestinos/fisiologia , Receptores do Ácido Retinoico/metabolismo , Processamento Alternativo , Animais , Biologia Computacional , Mapeamento de Sequências Contíguas , DNA Complementar/metabolismo , Regulação da Expressão Gênica , Holothuria/genética , Fases de Leitura Aberta , Filogenia , Regeneração , Receptores X de Retinoides/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Transdução de Sinais
15.
Ann Hepatol ; 16(4): 501-509, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28611266

RESUMO

BACKGROUND AND AIM: The HBV covalently closed circular DNA (cccDNA) is organized into a minichromosome in the nuclei of infected hepatocytes through interactions with histone and nonhistone proteins. Retinoid X receptor α (RXRα), a liver-enriched nuclear receptor, participates in regulation of HBV replication and transcription through modulation of HBV enhancer 1 and core promoter activity. MATERIAL AND METHODS: This study investigated RXRα involvement in HBV cccDNA epigenetic modifications. Quantitative cccDNA chromatin immunoprecipitation (ChIP) was applied to study the recruitment of RXRα, histones, and chromatin-modifying enzymes to HBV minichromosome in HepG2 cells after transfection of the linear HBV genome. RESULTS: RXRα Was found to directly bind to HBV cccDNA; recruitment of RXRα to HBV mini-chromosome paralleled HBV replication, histone recruitment, and histone acetylation in HBVcccDNA. Moreover, RXRα overexpression or knock-down significantly increased or impaired the recruitment of the p300 acetyltransferase to cccDNAminichromosome. CONCLUSIONS: Our results confirmed the regulation of RXRα on HBV replication in vitro and demonstrated the modulation of RXRα on HBV cccDNA epigenetics. These findings provide a profound theoretical and experimental basis for late-model antiviral treatment acting on the HBV cccDNA and minichromosome.


Assuntos
DNA Circular/genética , DNA Viral/genética , Vírus da Hepatite B/genética , Hepatócitos/virologia , Receptor X Retinoide alfa/metabolismo , Replicação Viral , Acetilação , Montagem e Desmontagem da Cromatina , DNA Circular/biossíntese , DNA Viral/biossíntese , Epigênese Genética , Regulação Viral da Expressão Gênica , Células Hep G2 , Vírus da Hepatite B/crescimento & desenvolvimento , Vírus da Hepatite B/metabolismo , Hepatócitos/metabolismo , Histonas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Ligação Proteica , Receptor X Retinoide alfa/genética , Fatores de Tempo , Transcrição Gênica , Fatores de Transcrição de p300-CBP/metabolismo
16.
Mol Neurobiol ; 54(10): 7610-7619, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27832522

RESUMO

Neuroblastoma (NB) is the most common extracranial solid childhood tumor accounting for around 15% of pediatric cancer deaths and most probably originates from a failure in the development of embryonic neural crest cells. Retinoids can inhibit the proliferation and stimulate differentiation of NB cells. In addition, epigenetic events involving changes in chromatin structure and DNA methylation can mediate the effects of retinoids; hence, the scope of this study is to investigate the use of retinoids and epigenetic drugs in NB cell lines. Here, we demonstrate that the combination of retinoid all trans-retinoic acid (ATRA) with inhibitors of either histone deacetylases (HDACs) or DNA methyltransferase is more effective in impairing the proliferation of human SH-SY5Y and SK-N-BE(2) NB cells than any drug given alone. Treatments also induced differential changes on the messenger RNA (mRNA) expression of retinoid receptor subtypes and reduced the protein content of c-Myc, the neuronal markers NeuN and ß-3 tubulin, and the oncoprotein Bmi1. These results suggest that the combination of retinoids with epigenetic modulators is more effective in reducing NB growth than treatment with single drugs.


Assuntos
Proliferação de Células/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Neuroblastoma/metabolismo , Receptores do Ácido Retinoico/agonistas , Receptores do Ácido Retinoico/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Epigênese Genética/fisiologia , Inibidores de Histona Desacetilases/administração & dosagem , Humanos , Esteroides/administração & dosagem , Tretinoína/administração & dosagem , Tretinoína/análogos & derivados
17.
J Nutr Biochem ; 38: 12-17, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27721113

RESUMO

Much evidence suggests an association between vitamin D deficiency and chronic diseases such as obesity and dyslipidemia. Although genetic factors play an important role in the etiology of these diseases, only a few studies have investigated the relationship between vitamin D-related genes and anthropometric and lipid profiles. The aim of this study was to investigate the association of three vitamin D-related genes with anthropometric and lipid parameters in 542 adult individuals. We analyzed the rs2228570 polymorphism in the vitamin D receptor gene (VDR), rs2134095 in the retinoid X receptor gamma gene (RXRG) and rs7041 in the vitamin D-binding protein gene (GC). Polymorphisms were genotyped by TaqMan allelic discrimination. Gene-gene interactions were evaluated by the general linear model. The functionality of the polymorphisms was investigated using the following predictors and databases: SIFT (Sorting Intolerant from Tolerant), PolyPhen-2 (Polymorphism Phenotyping v2) and Human Splicing Finder 3. We identified a significant effect of the interaction between RXRG (rs2134095) and GC (rs7041) on low-density lipoprotein cholesterol (LDL-c) levels (P=.005). Furthermore, our in silico analysis suggested a functional role for both variants in the regulation of the gene products. Our results suggest that the vitamin D-related genes RXRG and GC affect LDL-c levels. These findings are in agreement with other studies that consistently associate vitamin D and lipid profile. Together, our results corroborate the idea that analyzing gene-gene interaction would be helpful to clarify the genetic component of lipid profile.


Assuntos
LDL-Colesterol/sangue , Predisposição Genética para Doença , Hipercolesterolemia/genética , Polimorfismo de Nucleotídeo Único , Receptores de Calcitriol/genética , Receptor X Retinoide gama/genética , Proteína de Ligação a Vitamina D/genética , Adolescente , Adulto , Alelos , Brasil , Biologia Computacional , Bases de Dados Genéticas , Sistemas Inteligentes , Feminino , Frequência do Gene , Estudos de Associação Genética , Humanos , Hipercolesterolemia/sangue , Hipercolesterolemia/metabolismo , Masculino , Receptores de Calcitriol/metabolismo , Receptor X Retinoide gama/metabolismo , Proteína de Ligação a Vitamina D/metabolismo , Adulto Jovem
18.
Biochim Biophys Acta ; 1863(6 Pt A): 1134-45, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26883505

RESUMO

Age-related macular degeneration (AMD) is among the main pathologies leading to blindness in adults and has currently no cure or effective treatment. Selective apoptosis of retina pigment epithelial (RPE) cells results in the progressive loss of photoreceptor neurons, with the consequent gradual vision loss. Oxidative stress plays an important role in this process. We have previously determined that activation of RXRs protects rat photoreceptor neurons from oxidative stress-induced apoptosis. In this study we investigated whether RXR ligands prevented apoptosis in an RPE cell line, D407 cells, exposed to hydrogen peroxide (H2O2). H2O2 induced apoptosis of D407 cells, promoting p65NFκB nuclear translocation, increasing Bax mRNA expression, activating caspase-3 and altering cell morphology. We show, for the first time, that HX630, a RXR pan-agonist, protected D407 cells from H2O2-induced apoptosis, preventing p65NFκB nuclear translocation, increasing Bclxl and PPARγ mRNA levels and simultaneously decreasing Bax mRNA levels and caspase-3 activation. Pretreatment with a RXR antagonist blocked HX630 protection. LG100754, which binds RXRs but only activates heterodimers and is an antagonist of RXR homodimers, also had a protective effect. In addition, only agonists known to bind to RXR/PPARγ were protective. As a whole, our results suggest that RXR activation protects RPE cells from oxidative stress-induced apoptosis and this protection might involve signaling through a heterodimeric receptor, such as RXR/PPARγ. These data also imply that RXR agonists might provide potential pharmacological tools for treating retina degenerative diseases.


Assuntos
Apoptose/fisiologia , Epitélio Pigmentado da Retina/metabolismo , Receptores X de Retinoides/metabolismo , Transdução de Sinais/fisiologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Benzazepinas/farmacologia , Benzoatos/farmacologia , Western Blotting , Caspase 3/metabolismo , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Microscopia Confocal , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , PPAR gama/genética , PPAR gama/metabolismo , Substâncias Protetoras/farmacologia , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Receptores X de Retinoides/agonistas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
19.
Biochim Biophys Acta ; 1840(10): 3034-41, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24972164

RESUMO

BACKGROUND: Brazilian green propolis (BGP), a resinous substance produced from Baccharis dracunculifolia by Africanized honey bees (Apis mellifera), is used as a folk medicine. Our present study explores the retinoid X receptor (RXR) agonistic activity of BGP and the identification of an RXR agonist in its extract. METHODS: RXRα agonistic activity was evaluated using a luciferase reporter gene assay. Isolation of the RXRα agonist from the ethanolic extract of BGP was performed using successive silica gel and a reversed phase column chromatography. The interaction between the isolated RXRα agonist and RXRα protein was predicted by a receptor-ligand docking simulation. The nuclear receptor (NR) cofactor assay was used to estimate whether the isolated RXRα agonist bound to various NRs, including RXRs and peroxisome proliferator-activated receptors (PPARs). We further examined its effect on adipogenesis in 3T3-L1 fibroblasts. RESULTS: We identified drupanin as an RXRα agonist with an EC50 value of 4.8 ± 1.0 µM. Drupanin activated three RXR subtypes by a similar amount and activated PPARγ moderately. Additionally, drupanin induced adipogenesis and elevated aP2 mRNA levels in 3T3-L1 fibroblasts. CONCLUSIONS: Drupanin, a component of BGP, is a novel RXR agonist with slight PPARγ agonistic activity. GENERAL SIGNIFICANCE: This study revealed for the first time that BGP activates RXR and drupanin is an RXR agonist in its extract.


Assuntos
Simulação de Acoplamento Molecular , PPAR gama/agonistas , Própole , Receptor X Retinoide alfa/agonistas , Células 3T3-L1 , Adipogenia/efeitos dos fármacos , Adipogenia/fisiologia , Animais , Abelhas , Brasil , Células HEK293 , Humanos , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , Própole/química , Própole/farmacologia , Receptor X Retinoide alfa/genética , Receptor X Retinoide alfa/metabolismo
20.
Aquat Toxicol ; 142-143: 447-57, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24121122

RESUMO

The pregnane X receptor (PXR) (nuclear receptor NR1I2) is a ligand activated transcription factor, mediating responses to diverse xenobiotic and endogenous chemicals. The properties of PXR in fish are not fully understood. Here we report on cloning and characterization of full-length PXR of zebrafish, Danio rerio, and pxr expression in vivo. Initial efforts gave a cDNA encoding a 430 amino acid protein identified as zebrafish pxr by phylogenetic and synteny analysis. The sequence of the cloned Pxr DNA binding domain (DBD) was highly conserved, with 74% identity to human PXR-DBD, while the ligand-binding domain (LBD) of the cloned sequence was only 44% identical to human PXR-LBD. Sequence variation among clones in the initial effort prompted sequencing of multiple clones from a single fish. There were two prominent variants, one sequence with S183, Y218 and H383 and the other with I183, C218 and N383, which we designate as alleles pxr*1 (nr1i2*1) and pxr*2 (nr1i2*2), respectively. In COS-7 cells co-transfected with a PXR-responsive reporter gene, the full-length Pxr*1 (the more common variant) was activated by known PXR agonists clotrimazole and pregnenolone 16α-carbonitrile but to a lesser extent than the full-length human PXR. Activation of full-length Pxr*1 was only 10% of that with the Pxr*1 LBD. Quantitative real time PCR analysis showed prominent expression of pxr in liver and eye, as well as brain and intestine of adult zebrafish. The pxr was expressed in heart and kidney at levels similar to that in intestine. The expression of pxr in liver was weakly induced by ligands for mammalian PXR or constitutive androstane receptor (NR1I3). The results establish a foundation for PXR studies in this vertebrate model. PXR allelic variation and the differences between the full-length PXR and the LBD in reporter assays have implications for assessing the action of PXR ligands in zebrafish.


Assuntos
Alelos , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Peixe-Zebra/genética , Animais , Encéfalo/metabolismo , Receptor Constitutivo de Androstano , Olho/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Ordem dos Genes , Fígado/metabolismo , Masculino , Dados de Sequência Molecular , Fenobarbital/farmacologia , Filogenia , Receptor de Pregnano X , Ligação Proteica , Piridinas/farmacologia , Poluentes Químicos da Água/farmacologia , Peixe-Zebra/classificação , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA