Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecology ; 102(2): e03207, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32981066

RESUMO

Restoring forest ecosystems has become a global priority. Yet, soil dynamics are still poorly assessed among restoration studies and there is a lack of knowledge on how soil is affected by forest restoration process. Here, we compile information on soil dynamics in forest restoration based on soil physical, chemical, and biological attributes in temperate and tropical forest regions. It encompasses 50 scientific papers across 17 different countries and contains 1,469 points of quantitative information of soil attributes between reference (e.g., old-growth forest) and restored ecosystems (e.g., forests in their initial or secondary stage of succession) within the same study. To be selected, studies had to be conducted in forest ecosystems, to include multiple sampling sites (replicates) in both restored and reference ecosystems, and to encompass quantitative data of soil attributes for both reference and restored ecosystems. We recorded in each study the following information: (1) study year, (2) country, (3) forest region (tropical or temperate), (4) latitude, (5) longitude, (6) soil class, (7) past disturbance, (8) restoration strategy (active or passive), (9) restoration age, (10) soil attribute type (physical, chemical, or biological); (11) soil attribute, (12) soil attribute unit, (13) soil sampling (procedures), (14) date of sampling, (15) soil depth sampled, (16) soil analysis, (17) quantitative values of soil attributes for both restored and reference ecosystems, (18) type of variation (standard error of deviation) for both restored and reference ecosystems, and (19) quantitative values of the variation for both restored and reference ecosystems. These were the most common data available in the selected studies. This extensive database on the extent soil physical, chemical, and biological attributes differ between reference and restored ecosystems can fill part of the existing gap on both soil science and forest restoration in terms of (1) which are the critical soil attributes to be monitored during forest restoration? and (2) how do environmental factors affect soil attributes in forest restoration? The data will be made available to the scientific community for further analyses on both soil science and forest restoration. Soil information gaps during the forest restoration process and their general patterns can be addressed using this data set. There are no copyright or proprietary restrictions.

2.
Conserv Biol ; 32(3): 525-534, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29532979

RESUMO

New global initiatives to restore forest landscapes present an unparalleled opportunity to reverse deforestation and forest degradation. Participatory monitoring could play a crucial role in providing accountability, generating local buy in, and catalyzing learning in monitoring systems that need scalability and adaptability to a range of local sites. We synthesized current knowledge from literature searches and interviews to provide lessons for the development of a scalable, multisite participatory monitoring system. Studies show that local people can collect accurate data on forest change, drivers of change, threats to reforestation, and biophysical and socioeconomic impacts that remote sensing cannot. They can do this at one-third the cost of professionals. Successful participatory monitoring systems collect information on a few simple indicators, respond to local priorities, provide appropriate incentives for participation, and catalyze learning and decision making based on frequent analyses and multilevel interactions with other stakeholders. Participatory monitoring could provide a framework for linking global, national, and local needs, aspirations, and capacities for forest restoration.


Assuntos
Conservação dos Recursos Naturais , Florestas , Computadores , Coleta de Dados , Tomada de Decisões
3.
Ecology ; 97(8): 2167, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27859188

RESUMO

Restoration initiatives are becoming increasingly applied around the world. Billions of dollars have been spent on ecological restoration research and initiatives, but restoration outcomes differ widely among these initiatives in part due to variable socioeconomic and ecological contexts. Here, we present the most comprehensive dataset gathered to date on forest restoration. It encompasses 269 primary studies across 221 study landscapes in 53 countries and contains 4,645 quantitative comparisons between reference ecosystems (e.g., old-growth forest) and degraded or restored ecosystems for five taxonomic groups (mammals, birds, invertebrates, herpetofauna, and plants) and five measures of vegetation structure reflecting different ecological processes (cover, density, height, biomass, and litter). We selected studies that (1) were conducted in forest ecosystems; (2) had multiple replicate sampling sites to measure indicators of biodiversity and/or vegetation structure in reference and restored and/or degraded ecosystems; and (3) used less-disturbed forests as a reference to the ecosystem under study. We recorded (1) latitude and longitude; (2) study year; (3) country; (4) biogeographic realm; (5) past disturbance type; (6) current disturbance type; (7) forest conversion class; (8) restoration activity; (9) time that a system has been disturbed; (10) time elapsed since restoration started; (11) ecological metric used to assess biodiversity; and (12) quantitative value of the ecological metric of biodiversity and/or vegetation structure for reference and restored and/or degraded ecosystems. These were the most common data available in the selected studies. We also estimated forest cover and configuration in each study landscape using a recently developed 1 km consensus land cover dataset. We measured forest configuration as the (1) mean size of all forest patches; (2) size of the largest forest patch; and (3) edge:area ratio of forest patches. Global analyses of the factors influencing ecological restoration success at both the local and landscape scale are urgently needed to guide restoration initiatives and to further develop restoration knowledge in a topic area of much contemporary interest.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Florestas , Animais , Ecossistema , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA