RESUMO
We determined peripheral blood (PB) and biopsy (Bx) RNA expression signatures in a Brazilian and US cohort of kidney transplant patients. Phenotypes assigned by precise histology were: acute rejection (AR), interstitial fibrosis/tubular atrophy/chronic rejection (CR), excellent functioning transplants (TX), and glomerulonephritis recurrence (GN). Samples were analyzed on microarrays and profiles from each cohort were cross-validated on the other cohort with similar phenotypes. We discovered signatures for each tissue: (1) AR vs TX, (2) CR vs TX, and (3) GN vs TX using the Random Forests algorithm. We validated biopsies signatures of AR vs TX (area under the curve [AUC] 0.97) and CR vs TX (AUC 0.87). We also validated both PB and Bx signatures of AR vs TX and CR vs TX with varying degrees of accuracy. Several biological pathways were shared between AR and CR, suggesting similar rejection mechanisms in these 2 clinical phenotypes. Thus, we identified gene expression signatures for AR and CR in transplant patients and validated them in independent cohorts of significantly different racial/ethnic backgrounds. These results reveal that there are strong unifying immune mechanisms driving transplant diseases and identified in the signatures discovered in each cohort, suggesting that molecular diagnostics across populations are feasible despite ethnic and environmental differences.
Assuntos
Biomarcadores/análise , Etnicidade/genética , Rejeição de Enxerto/diagnóstico , Falência Renal Crônica/cirurgia , Transplante de Rim/efeitos adversos , Leucócitos Mononucleares/metabolismo , Transcriptoma , Adolescente , Adulto , Idoso , Biópsia , Estudos de Coortes , Feminino , Seguimentos , Perfilação da Expressão Gênica , Rejeição de Enxerto/sangue , Rejeição de Enxerto/etiologia , Sobrevivência de Enxerto , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Adulto JovemRESUMO
Natural killer (NK) cells are key components of the innate immune system. In murine cardiac transplant models, donor-specific antibodies (DSA), in concert with NK cells, are sufficient to inflict chronic allograft vasculopathy independently of T and B cells. In this study, we aimed to determine the effector mechanism(s) required by NK cells to trigger chronic allograft vasculopathy during antibody-mediated rejection. Specifically, we tested the relative contribution of the proinflammatory cytokine interferon gamma (IFN-γ) versus the contact-dependent cytotoxic mediators of perforin and the CD95/CD95L (Fas/Fas ligand [FasL]) pathway for triggering these lesions. C3H/HeJ cardiac allografts were transplanted into immune-deficient C57BL/6 rag-/- γc-/- recipients, who also received monoclonal anti-major histocompatibility complex (MHC) class I DSA. The combination of DSA and wild-type NK cell transfer triggered aggressive chronic allograft vasculopathy. However, transfer of IFN-γ-deficient NK cells or host IFN-γ neutralization led to amelioration of these lesions. Use of either perforin-deficient NK cells or CD95 (Fas)-deficient donors alone did not alter development of vasculopathy, but simultaneous disruption of NK cell-derived perforin and allograft Fas expression resulted in prevention of these abnormalities. Therefore, both NK cell IFN-γ production and contact-dependent cytotoxic activity are rate-limiting effector pathways that contribute to this form of antibody-induced chronic allograft vasculopathy.